Boulton Stephen, Akimoto Madoka, Akbarizadeh Sam, Melacini Giuseppe
From the Departments of Biochemistry and Biomedical Sciences and.
Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
J Biol Chem. 2017 Apr 14;292(15):6414-6428. doi: 10.1074/jbc.M116.773697. Epub 2017 Feb 7.
The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.
超极化激活的环核苷酸调制离子通道(HCN)驱动心脏的起搏活动,其功能异常可导致心脏疾病。其中一种疾病,家族性窦性心动过缓,是由HCN中的S672R突变引起的,其电生理表型包括通道激活电压的负向偏移和HCN失活加速。这些变化的结果是静息心率异常降低。然而,这些电生理变化背后的分子机制目前尚未完全了解。晶体学研究表明,S672R突变导致HCN细胞内门控四聚体的结构变化有限,但其对蛋白质动力学的影响尚不清楚。在这里,我们利用比较性的S672R-WT核磁共振分析表明,S672R突变导致HCN4亚型的无配体和结合配体形式的动力学都受到广泛干扰,反映了S672R如何重塑通过环磷酸腺苷(cAMP,HCN通道的主要环核苷酸调节剂)对HCN4进行调制的自由能景观。我们表明,S672R突变导致动态自抑制平衡向HCN4的失活状态发生组成性偏移,并拓宽了无配体形式的自由能阱,增强了在门控cAMP结合关键位点的结合配体形式的毫秒到微秒级动力学。这些由S672R诱导的动力学变化为该突变的电生理表型提供了分子基础,并证明S672R突变的致病作用主要可以根据蛋白质动力学的调制来合理化。