Suppr超能文献

心脏起搏器通道的自由能景观重塑解释了家族性窦性心动过缓的分子基础。

Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia.

作者信息

Boulton Stephen, Akimoto Madoka, Akbarizadeh Sam, Melacini Giuseppe

机构信息

From the Departments of Biochemistry and Biomedical Sciences and.

Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.

出版信息

J Biol Chem. 2017 Apr 14;292(15):6414-6428. doi: 10.1074/jbc.M116.773697. Epub 2017 Feb 7.

Abstract

The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.

摘要

超极化激活的环核苷酸调制离子通道(HCN)驱动心脏的起搏活动,其功能异常可导致心脏疾病。其中一种疾病,家族性窦性心动过缓,是由HCN中的S672R突变引起的,其电生理表型包括通道激活电压的负向偏移和HCN失活加速。这些变化的结果是静息心率异常降低。然而,这些电生理变化背后的分子机制目前尚未完全了解。晶体学研究表明,S672R突变导致HCN细胞内门控四聚体的结构变化有限,但其对蛋白质动力学的影响尚不清楚。在这里,我们利用比较性的S672R-WT核磁共振分析表明,S672R突变导致HCN4亚型的无配体和结合配体形式的动力学都受到广泛干扰,反映了S672R如何重塑通过环磷酸腺苷(cAMP,HCN通道的主要环核苷酸调节剂)对HCN4进行调制的自由能景观。我们表明,S672R突变导致动态自抑制平衡向HCN4的失活状态发生组成性偏移,并拓宽了无配体形式的自由能阱,增强了在门控cAMP结合关键位点的结合配体形式的毫秒到微秒级动力学。这些由S672R诱导的动力学变化为该突变的电生理表型提供了分子基础,并证明S672R突变的致病作用主要可以根据蛋白质动力学的调制来合理化。

相似文献

1
Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia.
J Biol Chem. 2017 Apr 14;292(15):6414-6428. doi: 10.1074/jbc.M116.773697. Epub 2017 Feb 7.
4
Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels.
J Biol Chem. 2015 Jul 17;290(29):17642-17654. doi: 10.1074/jbc.M115.651877. Epub 2015 May 4.
5
Allostery modulates the beat rate of a cardiac pacemaker.
J Biol Chem. 2017 Apr 14;292(15):6429-6430. doi: 10.1074/jbc.H116.773697.
6
In Vitro Analyses of Novel HCN4 Gene Mutations.
Cell Physiol Biochem. 2018;49(3):1197-1207. doi: 10.1159/000493301. Epub 2018 Sep 7.
7
Disease-associated HCN4 V759I variant is not sufficient to impair cardiac pacemaking.
Pflugers Arch. 2020 Dec;472(12):1733-1742. doi: 10.1007/s00424-020-02481-3. Epub 2020 Oct 23.
9
Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function.
Pflugers Arch. 2016 Oct;468(10):1663-71. doi: 10.1007/s00424-016-1870-1. Epub 2016 Aug 23.
10
Role of Dimers in the cAMP-Dependent Activation of Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels.
J Phys Chem B. 2018 Mar 1;122(8):2177-2190. doi: 10.1021/acs.jpcb.7b10125. Epub 2018 Feb 20.

引用本文的文献

1
A rare HCN4 variant combined with sick sinus syndrome, left ventricular noncompaction, and complex congenital heart disease.
Channels (Austin). 2025 Dec;19(1):2517851. doi: 10.1080/19336950.2025.2517851. Epub 2025 Jul 4.
2
Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review.
Front Cardiovasc Med. 2024 Oct 29;11:1488207. doi: 10.3389/fcvm.2024.1488207. eCollection 2024.
3
Altered cyclic nucleotide binding and pore opening in a diseased human HCN4 channel.
Biophys J. 2022 Apr 5;121(7):1166-1183. doi: 10.1016/j.bpj.2022.02.035. Epub 2022 Feb 24.
4
Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR.
Membranes (Basel). 2021 Aug 9;11(8):604. doi: 10.3390/membranes11080604.
5
Allosteric Mechanisms of Nonadditive Substituent Contributions to Protein-Ligand Binding.
Biophys J. 2020 Sep 15;119(6):1135-1146. doi: 10.1016/j.bpj.2020.07.038. Epub 2020 Aug 15.
6
Mechanism of allosteric inhibition in the cGMP-dependent protein kinase.
J Biol Chem. 2020 Jun 19;295(25):8480-8491. doi: 10.1074/jbc.RA120.013070. Epub 2020 Apr 21.
7
Recent Advances in EPAC-Targeted Therapies: A Biophysical Perspective.
Cells. 2019 Nov 19;8(11):1462. doi: 10.3390/cells8111462.
8
Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R relaxation dispersion.
Prog Nucl Magn Reson Spectrosc. 2019 Jun-Aug;112-113:55-102. doi: 10.1016/j.pnmrs.2019.05.002. Epub 2019 May 11.
9
Mechanisms of Specific versus Nonspecific Interactions of Aggregation-Prone Inhibitors and Attenuators.
J Med Chem. 2019 May 23;62(10):5063-5079. doi: 10.1021/acs.jmedchem.9b00258. Epub 2019 May 10.
10
Allostery modulates the beat rate of a cardiac pacemaker.
J Biol Chem. 2017 Apr 14;292(15):6429-6430. doi: 10.1074/jbc.H116.773697.

本文引用的文献

2
A Dynamic molecular basis for malfunction in disease mutants of p97/VCP.
Elife. 2016 Nov 9;5:e20143. doi: 10.7554/eLife.20143.
3
Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):E6939-E6945. doi: 10.1073/pnas.1611418113. Epub 2016 Oct 24.
4
Unidirectional allostery in the regulatory subunit RIα facilitates efficient deactivation of protein kinase A.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6776-E6785. doi: 10.1073/pnas.1610142113. Epub 2016 Oct 17.
5
Protein dynamics: Conformational footprints.
Nat Chem Biol. 2016 Oct 18;12(11):890-891. doi: 10.1038/nchembio.2212.
6
Distinct Signaling Roles of cIMP, cCMP, and cUMP.
Structure. 2016 Oct 4;24(10):1627-1628. doi: 10.1016/j.str.2016.09.002.
7
Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels.
J Phys Chem B. 2016 Oct 27;120(42):10936-10950. doi: 10.1021/acs.jpcb.6b07735. Epub 2016 Oct 18.
8
NMR structure and conformational dynamics of AtPDFL2.1, a defensin-like peptide from Arabidopsis thaliana.
Biochim Biophys Acta. 2016 Dec;1864(12):1739-1747. doi: 10.1016/j.bbapap.2016.08.017. Epub 2016 Aug 31.
9
10
Introduction to Protein Ensembles and Allostery.
Chem Rev. 2016 Jun 8;116(11):6263-6. doi: 10.1021/acs.chemrev.6b00283.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验