Suppr超能文献

使用循环 Ar/CF 和 Ar/CHF 等离子体对 Si 进行氟碳辅助原子层蚀刻的特性研究。

Characterizing fluorocarbon assisted atomic layer etching of Si using cyclic Ar/CF and Ar/CHF plasma.

机构信息

Department of Material Science and Engineering, and Institute for Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA.

Department of Physics, and Institute for Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA.

出版信息

J Chem Phys. 2017 Feb 7;146(5):052801. doi: 10.1063/1.4961458.

Abstract

With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (CF and CHF) and synchronized, plasma-based Ar ion bombardment [D. Metzler et al., J. Vac. Sci. Technol., A 32, 020603 (2014) and D. Metzler et al., J. Vac. Sci. Technol., A 34, 01B101 (2016)]. For low energy Ar ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20-30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF has a lower FC deposition yield for both SiO and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to CF. The thickness of deposited FC layers using CHF is found to be greater for Si than for SiO. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.

摘要

随着人们对能够实现原子级分辨率的定向刻蚀方法的兴趣日益增加,对于原子层刻蚀工艺(或一般具有原子层精度的刻蚀工艺)的开发和特性描述的需求也在不断增长。在这项工作中,使用流量控制的循环等离子体工艺在埃级水平上对 SiO 和 Si 进行刻蚀。这是基于稳态 Ar 等离子体,周期性地精确注入氟碳(FC)前体(CF 和 CHF),并同步进行基于等离子体的 Ar 离子轰击[D. Metzler 等人,J. Vac. Sci. Technol.,A32,020603(2014 年)和 D. Metzler 等人,J. Vac. Sci. Technol.,A34,01B101(2016 年)]。对于低能量 Ar 离子轰击条件,物理溅射速率最小化,而当 FC 反应物存在于表面时,可以进行材料刻蚀。这种循环方法为工艺优化提供了很大的参数空间。通过原位实时椭偏仪,研究了每个循环的刻蚀深度、去除速率以及去除的自限制,以及这些方面对材料的依赖性,作为 FC 表面覆盖率、离子能量和刻蚀步长的函数。发现每个循环沉积的 FC 厚度对 SiO 和 Si 的每个循环刻蚀深度有很大影响,但在控制材料刻蚀选择性方面受到限制。20-30 eV 范围内的离子能量强烈影响材料选择性。前体的选择会对表面化学和化学增强刻蚀产生重大影响。对于 SiO 和 Si,CHF 的 FC 沉积产率较低,并且与 CF 相比,FC 沉积产率对衬底具有很强的依赖性。使用 CHF 沉积的 FC 层厚度发现对于 Si 比 SiO 更大。X 射线光电子能谱用于研究表面化学。当使用 11 Å 的较厚 FC 膜时,在一个循环中会看到 FC 膜化学性质的剧烈变化,而衬底的化学状态变化要小得多。另一方面,对于每个循环沉积 5 Å 的 FC 薄膜,在一个蚀刻循环中会看到强烈的衬底表面化学变化。这种周期性地沉积薄的 FC 薄膜的循环刻蚀与具有稳态 FC 层的常规刻蚀有很大的不同,因为在每个循环中表面条件会发生强烈变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验