基于综合计算/实验方法的生物优化药物
Biobetters From an Integrated Computational/Experimental Approach.
作者信息
Kuyucak Serdar, Kayser Veysel
机构信息
School of Physics, University of Sydney, NSW 2006, Australia.
Faculty of Pharmacy, University of Sydney, NSW 2006, Australia.
出版信息
Comput Struct Biotechnol J. 2017 Jan 16;15:138-145. doi: 10.1016/j.csbj.2017.01.003. eCollection 2017.
Biobetters are new drugs designed from existing peptide or protein-based therapeutics by improving their properties such as affinity and selectivity for the target epitope, and stability against degradation. Computational methods can play a key role in such design problems-by predicting the changes that are most likely to succeed, they can drastically reduce the number of experiments to be performed. Here we discuss the computational and experimental methods commonly used in drug design problems, focusing on the inverse relationship between the two, namely, the more accurate the computational predictions means the less experimental effort is needed for testing. Examples discussed include efforts to design selective analogs from toxin peptides targeting ion channels for treatment of autoimmune diseases and monoclonal antibodies which are the fastest growing class of therapeutic agents particularly for cancers and autoimmune diseases.
生物优化药是通过改善现有基于肽或蛋白质的治疗药物的特性(如对靶表位的亲和力和选择性以及抗降解稳定性)而设计的新药。计算方法在这类设计问题中可以发挥关键作用——通过预测最有可能成功的变化,它们可以大幅减少需要进行的实验数量。在这里,我们讨论药物设计问题中常用的计算和实验方法,重点关注两者之间的反比关系,即计算预测越准确,测试所需的实验工作量就越少。讨论的例子包括从靶向离子通道的毒素肽设计选择性类似物用于治疗自身免疫性疾病的努力,以及单克隆抗体,单克隆抗体是治疗药物中增长最快的一类,尤其用于癌症和自身免疫性疾病的治疗。
相似文献
Comput Struct Biotechnol J. 2017-1-16
J Pharm Sci. 2015-8
Biotechnol Bioeng. 2017-6
ACS Chem Biol. 2013-2-15
Adv Drug Deliv Rev. 2016-12-2
Drug Discov Today. 2018-5-4
引用本文的文献
Cancer Metastasis Rev. 2024-12
本文引用的文献
Biophys Rev. 2012-9
Adv Drug Deliv Rev. 2016-12-2
PLoS One. 2016-3-23
Crit Rev Anal Chem. 2015
J Phys Chem B. 1998-4-30