Suppr超能文献

对合理添加糖基化序列的工程化曲妥珠单抗进行聚糖谱分析,结果显示聚糖复杂性显著增加。

Glycan Profile Analysis of Engineered Trastuzumab with Rationally Added Glycosylation Sequons Presents Significantly Increased Glycan Complexity.

作者信息

Cruz Esteban, Sifniotis Vicki, Sumer-Bayraktar Zeynep, Reslan Mouhamad, Wilkinson-White Lorna, Cordwell Stuart, Kayser Veysel

机构信息

Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

School of Life and Environmental Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Pharmaceutics. 2021 Oct 20;13(11):1747. doi: 10.3390/pharmaceutics13111747.

Abstract

Protein aggregation constitutes a recurring complication in the manufacture and clinical use of therapeutic monoclonal antibodies (mAb) and mAb derivatives. Antibody aggregates can reduce production yield, cause immunogenic reactions, decrease the shelf-life of the pharmaceutical product and impair the capacity of the antibody monomer to bind to its cognate antigen. A common strategy to tackle protein aggregation involves the identification of surface-exposed aggregation-prone regions (APR) for replacement through protein engineering. It was shown that the insertion of -glycosylation sequons on amino acids proximal to an aggregation-prone region can increase the physical stability of the protein by shielding the APR, thus preventing self-association of antibody monomers. We recently implemented this approach in the Fab region of full-size adalimumab and demonstrated that the thermodynamic stability of the Fab domain increases upon -glycosite addition. Previous experimental data reported for this technique have lacked appropriate confirmation of glycan occupancy and structural characterization of the ensuing glycan profile. Herein, we mutated previously identified candidate positions on the Fab domain of Trastuzumab and employed tandem mass spectrometry to confirm attachment and obtain a detailed -glycosylation profile of the mutants. The Trastuzumab glycomutants displayed a glycan profile with significantly higher structural heterogeneity compared to the HEK Trastuzumab antibody, which contains a single -glycosylation site per heavy chain located in the CH2 domain of the Fc region. These findings suggest that Fab -glycosites have higher accessibility to enzymes responsible for glycan maturation. Further, we have studied effects on additional glycosylation on protein stability via accelerated studies by following protein folding and aggregation propensities and observed that additional glycosylation indeed enhances physical stability and prevent protein aggregation. Our findings shed light into mAb glycobiology and potential implications in the application of this technique for the development of "biobetter" antibodies.

摘要

蛋白质聚集是治疗性单克隆抗体(mAb)及其衍生物生产和临床应用中反复出现的并发症。抗体聚集体会降低产量、引发免疫反应、缩短药品保质期,并削弱抗体单体与同源抗原结合的能力。解决蛋白质聚集的常用策略包括识别表面暴露的易于聚集区域(APR),通过蛋白质工程进行替换。研究表明,在易于聚集区域附近的氨基酸上插入糖基化序列可以通过屏蔽APR来提高蛋白质的物理稳定性,从而防止抗体单体的自缔合。我们最近在全尺寸阿达木单抗的Fab区域实施了这种方法,并证明添加糖基化位点后Fab结构域的热力学稳定性增加。此前针对该技术报道的实验数据缺乏对聚糖占据情况的适当确认以及对所得聚糖谱的结构表征。在此,我们对曲妥珠单抗Fab结构域上先前确定的候选位置进行突变,并采用串联质谱法确认糖基化位点的附着情况,从而获得突变体的详细糖基化谱。与HEK曲妥珠单抗抗体相比,曲妥珠单抗糖基化突变体的聚糖谱显示出更高的结构异质性,HEK曲妥珠单抗抗体每条重链在Fc区域的CH2结构域中有一个单一的糖基化位点。这些发现表明,Fab糖基化位点对负责聚糖成熟的酶具有更高的可及性。此外,我们通过跟踪蛋白质折叠和聚集倾向,通过加速研究探讨了额外糖基化对蛋白质稳定性产生的影响,发现额外糖基化确实增强了物理稳定性并防止了蛋白质聚集。我们的研究结果为单克隆抗体糖生物学以及该技术在开发“生物优化”抗体应用中的潜在意义提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cdd/8620955/aae1ea28f6bd/pharmaceutics-13-01747-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验