Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland.
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Nat Commun. 2017 Feb 9;8:14404. doi: 10.1038/ncomms14404.
Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures.
传统上,表面上单个分子和原子的构型转变是使用带有能量势垒和前置指数因子(尝试率)参数的 Arrhenius 方程来描述的。即使对于相同的系统,特征参数也会发生变化,前置指数因子有时甚至相差几个数量级。我们使用低温扫描隧道显微镜(STM)来测量 Au(111)上的单个二丁基硫分子,结果表明,当针尖尖端和分子的相对位置变化为分子尺寸的一小部分时,就会出现差异。在这种尺度上改变针尖位置会以高度相关的方式改变转变的势垒和尝试率,从而导致单个分子的焓熵补偿。相反,适当地定位 STM 针尖可以在补偿线上选择工作点并改变转变速率。这些结果强调了即使在低温下,也需要考虑熵对单个分子转变速率的影响。