Cox Angela M, Gao Yong, Perl Anne-Karina T, Tepper Robert S, Ahlfeld Shawn K
Program in Developmental Biology and Neonatal Medicine, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana.
Division of Neonatology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana.
Pediatr Pulmonol. 2017 May;52(5):616-624. doi: 10.1002/ppul.23654. Epub 2017 Feb 10.
Bronchopulmonary dysplasia (BPD) results from alveolar simplification and abnormal development of alveolar and capillary structure. Survivors of BPD display persistent deficits in airflow and membrane and vascular components of alveolar gas diffusion. Despite being the defining feature of BPD, various neonatal hyperoxia models of BPD have not routinely assessed pulmonary gas diffusion.
To simulate the most commonly-utilized neonatal hyperoxia models, we exposed neonatal mice to room air or ≥90% hyperoxia during key stages of distal lung development: through the first 4 (saccular), 7 (early alveolar), or 14 (bulk alveolar) postnatal days, followed by a period of recovery in room air until 8 weeks of age when alveolar septation is essentially complete. We systematically assessed and correlated the effects of neonatal hyperoxia on the degree of alveolar-capillary structural and functional impairment. We hypothesized that the degree of alveolar-capillary simplification would correlate strongly with worsening diffusion impairment.
Neonatal hyperoxia exposure, of any duration, resulted in alveolar simplification and impaired pulmonary gas diffusion. Mean Linear Intercept increased in proportion to the length of hyperoxia exposure while alveolar and total lung volume increased markedly only with prolonged exposure. Surprisingly, despite having a similar effect on alveolar surface area, only prolonged hyperoxia for 14 days resulted in reduced pulmonary microvascular volume. Estimates of alveolar and capillary structure, in general, correlated poorly with assessment of gas diffusion.
Our results help define the physiological and structural consequences of commonly-employed neonatal hyperoxia models of BPD and inform their clinical utility. Pediatr Pulmonol. 2017;52:616-624. © 2016 Wiley Periodicals, Inc.
支气管肺发育不良(BPD)是由肺泡简化以及肺泡和毛细血管结构异常发育所致。BPD幸存者在气流以及肺泡气体扩散的膜和血管成分方面存在持续性缺陷。尽管肺泡简化是BPD的决定性特征,但各种BPD的新生儿高氧模型并未常规评估肺气体扩散情况。
为模拟最常用的新生儿高氧模型,我们在肺远端发育的关键阶段将新生小鼠暴露于室内空气或≥90%的高氧环境中:出生后的前4天(囊状期)、7天(早期肺泡期)或14天(大量肺泡期),随后在室内空气中恢复一段时间,直至8周龄,此时肺泡间隔基本发育完成。我们系统地评估了新生儿高氧对肺泡 - 毛细血管结构和功能损伤程度的影响,并进行了相关性分析。我们假设肺泡 - 毛细血管简化程度与扩散障碍的加重密切相关。
无论高氧暴露持续时间如何,均可导致肺泡简化和肺气体扩散受损。平均线性截距与高氧暴露时间成正比增加,而肺泡和全肺体积仅在长时间暴露时显著增加。令人惊讶的是,尽管对肺泡表面积有类似影响,但只有持续14天的高氧暴露才导致肺微血管体积减少。总体而言,肺泡和毛细血管结构的评估与气体扩散评估的相关性较差。
我们的结果有助于明确常用的BPD新生儿高氧模型的生理和结构后果,并为其临床应用提供参考。《儿科肺科杂志》。2017年;52卷:616 - 624页。©2016威利期刊公司