Materials Science Division and ‡Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States.
Nano Lett. 2017 Mar 8;17(3):1595-1601. doi: 10.1021/acs.nanolett.6b04760. Epub 2017 Feb 17.
Dissolution is critical to nanomaterial stability, especially for partially dealloyed nanoparticle catalysts. Unfortunately, highly active catalysts are often not stable in their reactive environments, preventing widespread application. Thus, focusing on the structure-stability relationship at the nanoscale is crucial and will likely play an important role in meeting grand challenges. Recent advances in imaging capability have come from electron, X-ray, and other techniques but tend to be limited to specific sample environments and/or two-dimensional images. Here, we report investigations into the defect-stability relationship of silver nanoparticles to voltage-induced electrochemical dissolution imaged in situ in three-dimensional detail by Bragg coherent diffractive imaging. We first determine the average dissolution kinetics by stationary probe rotating disk electrode in combination with inductively coupled plasma mass spectrometry, which allows in situ measurement of Ag ion formation. We then observe the dissolution and redeposition processes in single nanocrystals, providing unique insight about the role of surface strain, defects, and their coupling to the dissolution chemistry. The methods developed and the knowledge gained go well beyond a "simple" silver electrochemistry and are applicable to all electrocatalytic reactions where functional links between activity and stability are controlled by structure and defect dynamics.
溶解对于纳米材料的稳定性至关重要,特别是对于部分脱合金的纳米颗粒催化剂而言。不幸的是,在反应环境中,高活性的催化剂通常不稳定,这阻碍了其广泛应用。因此,关注纳米尺度上的结构-稳定性关系至关重要,并且可能在应对重大挑战方面发挥重要作用。最近在成像能力方面的进展来自电子、X 射线和其他技术,但往往局限于特定的样品环境和/或二维图像。在这里,我们报告了通过布拉格相干衍射成象原位在三维细节中对银纳米粒子的缺陷-稳定性关系进行的研究,该方法对电压诱导的电化学溶解进行了成像。我们首先通过带有电感耦合等离子体质谱的固定探针旋转圆盘电极确定平均溶解动力学,这允许原位测量 Ag 离子的形成。然后,我们观察到单个纳米晶体中的溶解和再沉积过程,这为表面应变、缺陷及其与溶解化学的耦合在溶解过程中的作用提供了独特的见解。所开发的方法和获得的知识远远超出了“简单”的银电化学范围,并且适用于所有电催化反应,其中活性和稳定性之间的功能联系受到结构和缺陷动力学的控制。