Marino Jamir, Recati Alessio, Carusotto Iacopo
Institute of Theoretical Physics, TU Dresden, D-01062 Dresden, Germany.
Institute of Theoretical Physics, University of Cologne, D-50937 Cologne, Germany.
Phys Rev Lett. 2017 Jan 27;118(4):045301. doi: 10.1103/PhysRevLett.118.045301.
We theoretically propose an experimentally viable scheme to use an impurity atom in an atomic Bose-Einstein condensate, in order to realize condensed-matter analogs of quantum vacuum effects. In a suitable atomic level configuration, the collisional interaction between the impurity atom and the density fluctuations in the condensate can be tailored to closely reproduce the electric-dipole coupling of quantum electrodynamics. By virtue of this analogy, we recover and extend the paradigm of electromagnetic vacuum forces to the domain of cold atoms, showing in particular the emergence, at supersonic atomic speeds, of a novel power-law scaling of the Casimir force felt by the atomic impurity, as well as the occurrence of a quantum frictional force, accompanied by the Ginzburg emission of Bogoliubov quanta. Observable consequences of these quantum vacuum effects in realistic spectroscopic experiments are discussed.
我们从理论上提出了一种在实验上可行的方案,利用原子玻色 - 爱因斯坦凝聚体中的一个杂质原子,来实现量子真空效应的凝聚态类似物。在合适的原子能级构型中,杂质原子与凝聚体中密度涨落之间的碰撞相互作用可以被调整,以紧密重现量子电动力学中的电偶极耦合。借助这种类比,我们将电磁真空力的范式恢复并扩展到冷原子领域,特别展示了在超声速原子速度下,原子杂质所感受到的卡西米尔力的一种新型幂律标度的出现,以及量子摩擦力的出现,同时伴随着博戈留波夫量子的金兹堡发射。讨论了这些量子真空效应在实际光谱实验中的可观测后果。