Suppr超能文献

用于乳腺癌预后的Ki-67蛋白自动表征与计数:一种定量免疫组织化学方法。

Automated characterization and counting of Ki-67 protein for breast cancer prognosis: A quantitative immunohistochemistry approach.

作者信息

Mungle Tushar, Tewary Suman, Arun Indu, Basak Bijan, Agarwal Sanjit, Ahmed Rosina, Chatterjee Sanjoy, Maity Asok Kumar, Chakraborty Chandan

机构信息

School of Medical Science & Technology, IIT Kharagpur, Kharagpur, West Bengal, India.

Tata Medical Center, New Town, Rajarhat, Kolkata, West Bengal, India.

出版信息

Comput Methods Programs Biomed. 2017 Feb;139:149-161. doi: 10.1016/j.cmpb.2016.11.002. Epub 2016 Nov 9.

Abstract

Ki-67 protein expression plays an important role in predicting the proliferative status of tumour cells and deciding the future course of therapy in breast cancer. Immunohistochemical (IHC) determination of Ki-67 score or labelling index, by estimating the fraction of Ki67 positively stained tumour cells, is the most widely practiced method to assess tumour proliferation (Dowsett et al. 2011). Accurate manual counting of these cells (specifically nuclei) due to complex and dense distribution of cells, therefore, becomes critical and presents a major challenge to pathologists. In this paper, we suggest a hybrid clustering algorithm to quantify the proliferative index of breast cancer cells based on automated counting of Ki-67 nuclei. The proposed methodology initially pre-processes the IHC images of Ki-67 stained slides of breast cancer. The RGB images are converted to grey, Lab*, HSI, YCbCr, YIQ and XYZ colour space. All the stained cells are then characterized by two stage segmentation process. Fuzzy C-means quantifies all the stained cells as one cluster. The blue channel of the first stage output is given as input to k-means algorithm, which provides separate cluster for Ki-67 positive and negative cells. The count of positive and negative nuclei is used to calculate the F-measure for each colour space. A comparative study of our work with the expert opinion is studied to evaluate the error rate. The positive and negative nuclei detection results for all colour spaces are compared with the ground truth for validation and F-measure is calculated. The F-measure for Lab* colour space (0.8847) provides the best statistical result as compared to grey, HSI, YCbCr, YIQ and XYZ colour space. Further, a study is carried out to count nuclei manually and automatically from the proposed algorithm with an average error rate of 6.84% which is significant. The study provides an automated count of positive and negative nuclei using Lab*colour space and hybrid segmentation technique. Computerized evaluation of proliferation index can aid pathologist in assessing breast cancer severity. The proposed methodology, further, has the potential advantage of saving time and assisting in decision making over the present manual procedure and could evolve as an assistive pathological decision support system.

摘要

Ki-67蛋白表达在预测肿瘤细胞增殖状态及决定乳腺癌未来治疗方案方面发挥着重要作用。通过估计Ki67阳性染色肿瘤细胞的比例来免疫组化(IHC)测定Ki-67评分或标记指数,是评估肿瘤增殖最广泛使用的方法(道塞特等人,2011年)。由于细胞分布复杂且密集,准确手动计数这些细胞(特别是细胞核)变得至关重要,这对病理学家来说是一项重大挑战。在本文中,我们提出一种混合聚类算法,基于对Ki-67细胞核的自动计数来量化乳腺癌细胞的增殖指数。所提出的方法首先对乳腺癌Ki-67染色切片的IHC图像进行预处理。将RGB图像转换为灰度、Lab*、HSI、YCbCr、YIQ和XYZ颜色空间。然后通过两阶段分割过程对所有染色细胞进行特征提取。模糊C均值将所有染色细胞量化为一个聚类。将第一阶段输出的蓝色通道作为k均值算法的输入,该算法为Ki-67阳性和阴性细胞提供单独的聚类。阳性和阴性细胞核的计数用于计算每个颜色空间的F值。将我们的工作与专家意见进行比较研究以评估错误率。将所有颜色空间的阳性和阴性细胞核检测结果与真实情况进行比较以进行验证并计算F值。与灰度、HSI、YCbCr、YIQ和XYZ颜色空间相比,Lab颜色空间的F值(0.8847)提供了最佳统计结果。此外,进行了一项研究,通过所提出的算法手动和自动计数细胞核,平均错误率为6.84%,这一结果具有显著性。该研究使用Lab颜色空间和混合分割技术提供了阳性和阴性细胞核的自动计数。增殖指数的计算机化评估可以帮助病理学家评估乳腺癌的严重程度。所提出的方法进一步具有节省时间的潜在优势,并且在辅助决策方面优于目前的手动程序,并且可能发展成为一种辅助病理决策支持系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验