Suppr超能文献

使用Ki-67增殖指数对神经内分泌肿瘤进行基于人工智能的自动分级:比较评估与性能分析。

Automated AI-based grading of neuroendocrine tumors using Ki-67 proliferation index: comparative evaluation and performance analysis.

作者信息

Yücel Zehra, Akal Fuat, Oltulu Pembe

机构信息

Necmettin Erbakan University, Department of Computer Technologies, Konya, Turkey.

Hacettepe University, Graduate School of Science and Engineering, Ankara, Turkey.

出版信息

Med Biol Eng Comput. 2024 Jun;62(6):1899-1909. doi: 10.1007/s11517-024-03045-8. Epub 2024 Feb 27.

Abstract

Early detection is critical for successfully diagnosing cancer, and timely analysis of diagnostic tests is increasingly important. In the context of neuroendocrine tumors, the Ki-67 proliferation index serves as a fundamental biomarker, aiding pathologists in grading and diagnosing these tumors based on histopathological images. The appropriate treatment plan for the patient is determined based on the tumor grade. An artificial intelligence-based method is proposed to aid pathologists in the automated calculation and grading of the Ki-67 proliferation index. The proposed system first performs preprocessing to enhance image quality. Then, segmentation process is performed using the U-Net architecture, which is a deep learning algorithm, to separate the nuclei from the background. The identified nuclei are then evaluated as Ki-67 positive or negative based on basic color space information and other features. The Ki-67 proliferation index is then calculated, and the neuroendocrine tumor is graded accordingly. The proposed system's performance was evaluated on a dataset obtained from the Department of Pathology at Meram Faculty of Medicine Hospital, Necmettin Erbakan University. The results of the pathologist and the proposed system were compared, and the proposed system was found to have an accuracy of 95% in tumor grading when compared to the pathologist's report.

摘要

早期检测对于成功诊断癌症至关重要,及时分析诊断测试也日益重要。在神经内分泌肿瘤的背景下,Ki-67增殖指数是一种基本的生物标志物,可帮助病理学家根据组织病理学图像对这些肿瘤进行分级和诊断。根据肿瘤分级为患者确定合适的治疗方案。提出了一种基于人工智能的方法,以帮助病理学家对Ki-67增殖指数进行自动计算和分级。所提出的系统首先进行预处理以提高图像质量。然后,使用深度学习算法U-Net架构进行分割过程,以将细胞核与背景分离。然后根据基本颜色空间信息和其他特征将识别出的细胞核评估为Ki-67阳性或阴性。然后计算Ki-67增殖指数,并据此对神经内分泌肿瘤进行分级。在所提出的系统在从内梅廷·埃尔巴坎大学梅拉姆医学院病理科获得的数据集上进行了性能评估。比较了病理学家和所提出系统的结果,发现与病理学家的报告相比,所提出的系统在肿瘤分级方面的准确率为95%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验