Suppr超能文献

通过KOH化学活化法,研究了左氧氟沙星在枣(Phoenix dactylifera L.)核颗粒活性炭上的间歇吸附和固定床吸附。

Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation.

作者信息

Darweesh Teeba M, Ahmed Muthanna J

机构信息

Department of Chemical Engineering, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq.

Department of Chemical Engineering, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq.

出版信息

Environ Toxicol Pharmacol. 2017 Mar;50:159-166. doi: 10.1016/j.etap.2017.02.005. Epub 2017 Feb 5.

Abstract

Granular activated carbon (KAC) was prepared from abundant Phoenix dactylifera L. stones by microwave- assisted KOH activation. The characteristics of KAC were tested by pore analyses, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The adsorption behavior of levofloxacin (LEV) antibiotic on KAC with surface area of 817m/g and pore volume of 0.638cm/g were analyzed using batch and fixed bed systems. The equilibrium data collected by batch experiments were well fitted with Langmuir compared to Freundlich and Temkin isotherms. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial LEV concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. High LEV adsorption capacity of 100.3mg/g was reported on KAC, thus being an efficient adsorbent for antibiotic pollutants to protect ecological systems.

摘要

颗粒活性炭(KAC)由丰富的海枣核通过微波辅助KOH活化制备而成。通过孔隙分析、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)对KAC的特性进行了测试。使用间歇式和固定床系统分析了左氧氟沙星(LEV)抗生素在比表面积为817m/g、孔容为0.638cm/g的KAC上的吸附行为。与Freundlich和Temkin等温线相比,间歇实验收集的平衡数据与Langmuir等温线拟合良好。解释了流速(0.5 - 1.5ml/min)、床层高度(15 - 25cm)和初始LEV浓度(75 - 225mg/l)对穿透曲线行为的影响。固定床分析表明,Thomas模型和Yoon - Nelson模型对穿透数据的相关性更好。据报道,KAC对LEV的吸附容量高达100.3mg/g,因此是一种保护生态系统免受抗生素污染物侵害的高效吸附剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验