Anninos Peter
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 USA.
Living Rev Relativ. 1998;1(1):9. doi: 10.12942/lrr-1998-9. Epub 1998 Sep 15.
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
为了解释可观测宇宙,任何全面的宇宙学理论或模型都必须借鉴许多物理学学科的知识,例如强相互作用和弱相互作用的规范理论、重子物质的流体动力学和微观物理学、电磁场以及时空曲率。尽管将所有这些物理元素纳入一个完整的宇宙单一模型很困难,但计算方法和技术的进步对我们理解宇宙学模型、宇宙以及其中的天体物理过程做出了重大贡献。本文回顾了一系列针对宇宙学特定问题的数值计算:从大爆炸奇点动力学到引力波的基本相互作用;从夸克 - 强子相变到宇宙的大尺度结构。重点(尽管不仅限于此)是那些旨在根据观测到的宇宙来检验不同宇宙学模型的计算。