Rajantie Arttu
Department of Physics, Imperial College London, London SW7 2AZ, UK
Philos Trans A Math Phys Eng Sci. 2018 Mar 6;376(2114). doi: 10.1098/rsta.2017.0128.
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'.
2012年希格斯玻色子的发现以及大型强子对撞机的其他结果,证实了粒子物理学的标准模型是关于基本粒子及其相互作用直至数万亿电子伏特能量范围的正确理论。值得注意的是,该理论甚至可能一直有效到量子引力的普朗克尺度,因此它为描述早期宇宙提供了坚实的理论基础。此外,希格斯场本身具有独特的性质,这可能使其在宇宙演化过程中发挥核心作用,从暴胀到宇宙学相变以及重子物质和暗物质的起源,甚至可能通过电弱真空不稳定性决定宇宙的最终命运。粒子物理学与宇宙学之间的这些联系催生了一个新兴且不断发展的希格斯宇宙学领域,随着粒子物理实验和宇宙学观测的新数据不断涌现,有望为一些关于宇宙的最令人困惑的问题带来新的启示。本文是西奥·墨菲会议特刊“希格斯宇宙学”的一部分。