AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, PO Box 9504, 2300 RA Leiden, The Netherlands.
Nature. 2017 Feb 23;542(7642):461-464. doi: 10.1038/nature21044. Epub 2017 Feb 13.
Reciprocity is a general, fundamental principle governing various physical systems, which ensures that the transfer function-the transmission of a physical quantity, say light intensity-between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity (and therefore show non-reciprocity) have been mostly considered in dynamic systems involving electromagnetic, acoustic and mechanical wave propagation associated with fields varying in space and time. Here we show that it is possible to break reciprocity in static systems, realizing mechanical metamaterials that exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. This is achieved by combining large nonlinearities with suitable geometrical asymmetries and/or topological features. In addition to extending non-reciprocity and isolation to statics, our work sheds light on energy propagation in nonlinear materials with asymmetric crystalline structures and topological properties. We anticipate that breaking reciprocity will open avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.
互惠性是支配各种物理系统的一般基本原理,它确保了传递函数——物理量(例如光强)在空间中任意两点之间的传输——是相同的,无论几何或材料是否存在不对称性。打破这种传输对称性可以增强对信号传输、隔离和源保护的控制。到目前为止,在涉及电磁、声和机械波传播的动态系统中,与随时间和空间变化的场相关的设备大多考虑了打破互惠性(因此表现出非互惠性)。在这里,我们展示了在静态系统中打破互惠性是可能的,实现了机械超材料,在从不同侧面对其进行激励时,会表现出大不相同的输出位移,以及单向位移放大。这是通过结合大的非线性和适当的几何不对称性和/或拓扑特征来实现的。除了将非互易性和隔离扩展到静态系统之外,我们的工作还揭示了具有不对称晶体结构和拓扑性质的非线性材料中的能量传播。我们预计打破互惠性将为能量吸收、转换和收集、软机器人、假肢和光机械学开辟新途径。