Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States.
Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States.
Anal Chem. 2017 Mar 7;89(5):2731-2738. doi: 10.1021/acs.analchem.6b02377. Epub 2017 Feb 22.
Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.
质谱(MS)在蛋白质的鉴定、结构和功能特征分析方面发挥了越来越重要的作用。特别是串联质谱的使用为蛋白质和蛋白质复合物的结构信息获取提供了最通用的方法之一。电子俘获解离(ECD)独特的裂解蛋白质骨架键而保留非共价相互作用的性质,使其特别适合于天然蛋白质结构的研究。然而,氢键和盐桥稳定的分子内和分子间相互作用即使在预激活后也会阻碍碎片的分离,这对于研究大型大分子蛋白质和蛋白质复合物来说尤其成问题。在这里,我们描述了另一种激活方法,30eV 电子电离解离(EID),在天然蛋白质-配体和蛋白质-蛋白质复合物的自上而下 MS 表征方面的能力。EID 可以产生 ECD 无法提供的丰富结构信息。EID 允许比较人碳酸酐酶 I(HCA-I)的气相和溶液相结构稳定性和展开过程。此外,EID 的碎裂模式反映了apo、Zn 和 Cu,Zn-超氧化物歧化酶(SOD1)二聚体之间的结构相似性和差异。特别是 EID-MS 揭示了 Cu 结合和点突变(G41D)引起的结构变化。EID 的性能也与 193nm 紫外光解离(UVPD)进行了比较,这使我们能够探索它们作为天然蛋白质和蛋白质复合物 MS 研究的潜在有价值工具的定性相似性和差异。