Sir William Dunn School of Pathology.
Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital.
JCI Insight. 2017 Feb 9;2(3):e89160. doi: 10.1172/jci.insight.89160.
Tregs can adopt a catabolic metabolic program with increased capacity for fatty acid oxidation-fueled oxidative phosphorylation (OXPHOS). It is unclear why this form of metabolism is favored in Tregs and, more specifically, whether this program represents an adaptation to the environment and developmental cues or is "hardwired" by Foxp3. Here we show, using metabolic analysis and an unbiased mass spectroscopy-based proteomics approach, that Foxp3 is both necessary and sufficient to program Treg-increased respiratory capacity and Tregs' increased ability to utilize fatty acids to fuel oxidative phosphorylation. Foxp3 drives upregulation of components of all the electron transport complexes, increasing their activity and ATP generation by oxidative phosphorylation. Increased fatty acid β-oxidation also results in selective protection of Foxp3 cells from fatty acid-induced cell death. This observation may provide novel targets for modulating Treg function or selection therapeutically.
调节性 T 细胞(Tregs)可以采用分解代谢程序,增加脂肪酸氧化驱动的氧化磷酸化(OXPHOS)的能力。目前尚不清楚为什么这种代谢形式在 Tregs 中受到青睐,更具体地说,这种程序是对环境和发育线索的适应,还是由 Foxp3“硬连线”的。在这里,我们使用代谢分析和基于无偏质谱的蛋白质组学方法表明,Foxp3 既是编程 Treg 增加呼吸能力所必需的,也是 Tregs 增加利用脂肪酸为氧化磷酸化提供燃料的能力所必需的。Foxp3 驱动所有电子传递复合物的组成部分上调,增加它们的活性和通过氧化磷酸化产生的 ATP。增加的脂肪酸β氧化也导致 Foxp3 细胞选择性地免受脂肪酸诱导的细胞死亡。这一观察结果可能为调节 Treg 功能或在治疗上选择提供新的靶点。