解码肿瘤微环境中的代谢对话:从免疫抑制到精准癌症治疗
Decoding the metabolic dialogue in the tumor microenvironment: from immune suppression to precision cancer therapies.
作者信息
Wang Ruoli, Zhuang Jincheng, Zhang Qi, Wu Wantao, Yu Xinrui, Zhang Hao, Xie Zongyi
机构信息
Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
出版信息
Exp Hematol Oncol. 2025 Jul 22;14(1):99. doi: 10.1186/s40164-025-00689-6.
The tumor microenvironment (TME) represents a metabolic battleground where immune cells and cancer cells vie for essential nutrients, ultimately influencing antitumor immunity and treatment outcomes. Recent advancements have shed light on how the metabolic reprogramming of immune cells, including macrophages, T cells, and DCs, determines their functional polarization, survival, and interactions within the TME. Factors such as hypoxia, acidosis, and nutrient deprivation drive immune cells toward immunosuppressive phenotypes, while metabolic interactions between tumors and stromal cells further entrench therapeutic resistance. This review synthesizes new insights into the metabolic checkpoints that regulate immune cell behavior, focusing on processes like glycolysis, oxidative phosphorylation (OXPHOS), lipid oxidation, and amino acid dependencies. We emphasize how metabolic enzymes (e.g., IDO1, ACLY, CPT1A) and metabolites (e.g., lactate, kynurenine) facilitate immune evasion, and we propose strategies to reverse these pathways. Innovations such as single-cell metabolomics, spatial profiling, and AI-driven drug discovery are transforming our understanding of metabolic heterogeneity and its clinical implications. Furthermore, we discuss cutting-edge therapeutic approaches-from dual-targeting metabolic inhibitors to biomaterial-based delivery systems-that aim to reprogram immune cell metabolism and enhance the effectiveness of immunotherapy. Despite the promise in preclinical studies, challenges persist in translating these findings to clinical applications, including biomarker validation, metabolic plasticity, and interpatient variability. By connecting mechanistic discoveries with translational applications, this review highlights the potential of immunometabolic targeting to overcome resistance and redefine precision oncology.
肿瘤微环境(TME)是一个代谢战场,免疫细胞和癌细胞在这里争夺必需营养物质,最终影响抗肿瘤免疫和治疗效果。最近的进展揭示了免疫细胞(包括巨噬细胞、T细胞和树突状细胞)的代谢重编程如何决定其在TME中的功能极化、存活及相互作用。缺氧、酸中毒和营养剥夺等因素促使免疫细胞向免疫抑制表型转变,而肿瘤与基质细胞之间的代谢相互作用则进一步强化了治疗抗性。本综述综合了对调节免疫细胞行为的代谢检查点的新见解,重点关注糖酵解、氧化磷酸化(OXPHOS)、脂质氧化和氨基酸依赖性等过程。我们强调代谢酶(如IDO1、ACLY、CPT1A)和代谢物(如乳酸、犬尿氨酸)如何促进免疫逃逸,并提出逆转这些途径的策略。单细胞代谢组学、空间分析和人工智能驱动的药物发现等创新正在改变我们对代谢异质性及其临床意义的理解。此外,我们讨论了前沿治疗方法——从双靶点代谢抑制剂到基于生物材料的递送系统——这些方法旨在重新编程免疫细胞代谢并提高免疫治疗的有效性。尽管临床前研究前景广阔,但将这些发现转化为临床应用仍存在挑战,包括生物标志物验证、代谢可塑性和患者间变异性。通过将机制发现与转化应用联系起来,本综述强调了免疫代谢靶向克服抗性和重新定义精准肿瘤学的潜力。