ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
J Am Soc Mass Spectrom. 2017 May;28(5):971-977. doi: 10.1007/s13361-017-1612-4. Epub 2017 Feb 13.
Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.
蛋白质骨架酰胺氢/氘交换质谱(HDX-MS)通常在交换反应后和 MS 分析前利用酶解来提高数据分辨率。在 MS 分析之前对肽片段进行气相碎片化是一种提高分辨率的有前途的技术。该方法的最大技术挑战是消除气相中的分子内氢/氘交换(重排)。重排会掩盖氘的位置。Jørgensen 小组开创了一种在气相电子捕获/转移解离中最小化重排的方法。尽管进行了积极的研究,但氢重排的机制仍未得到很好的理解。困难源于这样一个事实,即氢重排的程度取决于仪器、各种质谱分析参数和分析的肽。在大多数氢重排研究中,通过整个分子中重排的百分比来测量氢重排的程度。本文证明,分子内氢/氘交换的程度取决于可交换氢位点的性质。神经降压素(9-13)、Arg-Pro-Tyr-Ile-Leu 的 Tyr 酰胺上的氘迁移速度明显快于 Ile 或 Leu 酰胺上的氘,表明最初位点上氘的损失不是氢和氘的简单随机化,而是更具特定部位的现象。这种更精确的方法可能有助于理解分子内氢交换的机制,并为优化参数以消除气相碎片化过程中的分子内氢/氘交换提供更高的置信度。