Suppr超能文献

自适应地质统计学抽样能够在马拉维农村地区的重复横断面调查中高效识别疟疾热点。

Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi.

作者信息

Kabaghe Alinune N, Chipeta Michael G, McCann Robert S, Phiri Kamija S, van Vugt Michèle, Takken Willem, Diggle Peter, Terlouw Anja D

机构信息

Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.

Public Health Department, College of Medicine, University of Malawi, Blantyre, Malawi.

出版信息

PLoS One. 2017 Feb 14;12(2):e0172266. doi: 10.1371/journal.pone.0172266. eCollection 2017.

Abstract

INTRODUCTION

In the context of malaria elimination, interventions will need to target high burden areas to further reduce transmission. Current tools to monitor and report disease burden lack the capacity to continuously detect fine-scale spatial and temporal variations of disease distribution exhibited by malaria. These tools use random sampling techniques that are inefficient for capturing underlying heterogeneity while health facility data in resource-limited settings are inaccurate. Continuous community surveys of malaria burden provide real-time results of local spatio-temporal variation. Adaptive geostatistical design (AGD) improves prediction of outcome of interest compared to current random sampling techniques. We present findings of continuous malaria prevalence surveys using an adaptive sampling design.

METHODS

We conducted repeated cross sectional surveys guided by an adaptive sampling design to monitor the prevalence of malaria parasitaemia and anaemia in children below five years old in the communities living around Majete Wildlife Reserve in Chikwawa district, Southern Malawi. AGD sampling uses previously collected data to sample new locations of high prediction variance or, where prediction exceeds a set threshold. We fitted a geostatistical model to predict malaria prevalence in the area.

FINDINGS

We conducted five rounds of sampling, and tested 876 children aged 6-59 months from 1377 households over a 12-month period. Malaria prevalence prediction maps showed spatial heterogeneity and presence of hotspots-where predicted malaria prevalence was above 30%; predictors of malaria included age, socio-economic status and ownership of insecticide-treated mosquito nets.

CONCLUSIONS

Continuous malaria prevalence surveys using adaptive sampling increased malaria prevalence prediction accuracy. Results from the surveys were readily available after data collection. The tool can assist local managers to target malaria control interventions in areas with the greatest health impact and is ready for assessment in other diseases.

摘要

引言

在疟疾消除的背景下,干预措施需要针对高负担地区以进一步减少传播。当前监测和报告疾病负担的工具缺乏持续检测疟疾所呈现的疾病分布在精细尺度上的空间和时间变化的能力。这些工具使用随机抽样技术,在捕捉潜在异质性方面效率低下,而资源有限环境中的卫生设施数据又不准确。对疟疾负担进行持续的社区调查可提供当地时空变化的实时结果。与当前的随机抽样技术相比,自适应地理统计设计(AGD)提高了对感兴趣结果的预测。我们展示了使用自适应抽样设计进行的持续疟疾流行率调查的结果。

方法

我们在马拉维南部奇夸瓦区马杰特野生动物保护区周边社区,以自适应抽样设计为指导进行了重复横断面调查,以监测五岁以下儿童的疟疾寄生虫血症和贫血患病率。AGD抽样使用先前收集的数据对预测方差高的新地点或预测超过设定阈值的地点进行抽样。我们拟合了一个地理统计模型来预测该地区的疟疾流行率。

结果

我们进行了五轮抽样,在12个月期间对来自1377户家庭的876名6 - 59个月大的儿童进行了检测。疟疾流行率预测图显示出空间异质性和热点地区的存在,即预测疟疾流行率高于30%的地区;疟疾的预测因素包括年龄、社会经济地位和经杀虫剂处理蚊帐的拥有情况。

结论

使用自适应抽样进行的持续疟疾流行率调查提高了疟疾流行率预测的准确性。调查结果在数据收集后即可获得。该工具可协助当地管理人员将疟疾控制干预措施针对对健康影响最大的地区,并且已准备好在其他疾病中进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fdf/5308819/f8c73df18584/pone.0172266.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验