Voorman R, Aust S D
Toxicol Appl Pharmacol. 1987 Aug;90(1):69-78. doi: 10.1016/0041-008x(87)90307-3.
Treatment of male Sprague-Dawley rats with 3,4,5,3',4',5'-hexabromobiphenyl (HBB) at 10 mumol/kg followed by purification of hepatic microsomal cytochrome P-450d revealed that HBB remained specifically bound to P-450d throughout purification. Binding was noncovalent since HBB was removed by extraction with dichloromethane. Although HBB induced both cytochrome P-450c and P-450d, specific immunoprecipitation of these isozymes from HBB-treated rats showed that HBB was associated only with cytochrome P-450d. Quantitation of HBB and cytochrome P-450d in microsomes from HBB-treated rats suggested a 0.9:1 ratio of HBB to cytochrome P-450d. Five other halogenated aromatic hydrocarbon inducers of cytochrome P-450d, bearing steric similarity to HBB (including 2,3,7,8-tetrachlorodibenzo-p-dioxin), were associated with cytochrome P-450d when used to induce cytochrome P-450d in rats. HBB inhibited estradiol 2-hydroxylase activity of purified cytochrome P-450d in a noncompetitive manner with an I50 of 38 nM for 50 nM P-450d whereas its noncoplanar isomer, 2,4,5,2',4',5'-hexabromobiphenyl, had an I50 over 700-fold higher. Thus certain polyhalogenated aromatic hydrocarbons, with the capacity to induce cytochrome P-450d also bind to the cytochrome when used as inducing agents and inhibit catalytic activity of the cytochrome.