文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

由细胞比例塑造的转录组特征为比较发育生物学提供了线索。

Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology.

作者信息

Pantalacci Sophie, Guéguen Laurent, Petit Coraline, Lambert Anne, Peterkovà Renata, Sémon Marie

机构信息

UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France.

Laboratoire de Biométrie et Biologie Évolutive (LBBE), Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France.

出版信息

Genome Biol. 2017 Feb 15;18(1):29. doi: 10.1186/s13059-017-1157-7.


DOI:10.1186/s13059-017-1157-7
PMID:28202034
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5312534/
Abstract

BACKGROUND: Comparative transcriptomics can answer many questions in developmental and evolutionary developmental biology. Most transcriptomic studies start by showing global patterns of variation in transcriptomes that differ between species or organs through developmental time. However, little is known about the kinds of expression differences that shape these patterns. RESULTS: We compared transcriptomes during the development of two morphologically distinct serial organs, the upper and lower first molars of the mouse. We found that these two types of teeth largely share the same gene expression dynamics but that three major transcriptomic signatures distinguish them, all of which are shaped by differences in the relative abundance of different cell types. First, lower/upper molar differences are maintained throughout morphogenesis and stem from differences in the relative abundance of mesenchyme and from constant differences in gene expression within tissues. Second, there are clear time-shift differences in the transcriptomes of the two molars related to cusp tissue abundance. Third, the transcriptomes differ most during early-mid crown morphogenesis, corresponding to exaggerated morphogenetic processes in the upper molar involving fewer mitotic cells but more migrating cells. From these findings, we formulate hypotheses about the mechanisms enabling the two molars to reach different phenotypes. We also successfully applied our approach to forelimb and hindlimb development. CONCLUSIONS: Gene expression in a complex tissue reflects not only transcriptional regulation but also abundance of different cell types. This knowledge provides valuable insights into the cellular processes underpinning differences in organ development. Our approach should be applicable to most comparative developmental contexts.

摘要

背景:比较转录组学能够回答发育生物学和进化发育生物学中的许多问题。大多数转录组学研究首先展示的是,在发育过程中,不同物种或器官的转录组之间存在的整体变异模式。然而,对于形成这些模式的表达差异类型,我们却知之甚少。 结果:我们比较了小鼠上下颌第一磨牙这两种形态上不同的连续器官在发育过程中的转录组。我们发现,这两种类型的牙齿在很大程度上共享相同的基因表达动态,但有三个主要的转录组特征将它们区分开来,所有这些特征都由不同细胞类型的相对丰度差异所塑造。第一,下颌/上颌磨牙的差异在整个形态发生过程中都存在,源于间充质相对丰度的差异以及组织内基因表达的持续差异。第二,与尖部组织丰度相关的两个磨牙转录组存在明显的时间偏移差异。第三,转录组在冠部早期到中期形态发生过程中差异最大,这对应于上颌磨牙中夸张的形态发生过程,涉及较少的有丝分裂细胞但更多的迁移细胞。基于这些发现,我们提出了关于使两个磨牙达到不同表型的机制的假设。我们还成功地将我们的方法应用于前肢和后肢的发育。 结论:复杂组织中的基因表达不仅反映转录调控,还反映不同细胞类型的丰度。这一知识为理解器官发育差异背后的细胞过程提供了有价值的见解。我们的方法应该适用于大多数比较发育的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/4402aa47eaf3/13059_2017_1157_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/539232c6ed36/13059_2017_1157_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/fdd6a486be86/13059_2017_1157_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/ec2aae633736/13059_2017_1157_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/1725257820a5/13059_2017_1157_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/7aec884fdc1f/13059_2017_1157_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/97c443bbca85/13059_2017_1157_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/4402aa47eaf3/13059_2017_1157_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/539232c6ed36/13059_2017_1157_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/fdd6a486be86/13059_2017_1157_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/ec2aae633736/13059_2017_1157_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/1725257820a5/13059_2017_1157_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/7aec884fdc1f/13059_2017_1157_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/97c443bbca85/13059_2017_1157_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/045f/5312534/4402aa47eaf3/13059_2017_1157_Fig7_HTML.jpg

相似文献

[1]
Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology.

Genome Biol. 2017-2-15

[2]
Tooth Morphogenesis and FGF4 Expression During Development of Molar Tooth in Three Muroid Rodents: Calomyscus elburzensis (Calomyscidae), Mesocricetus auratus (Cricetidae) and Mus musculus (Muridae).

Anat Rec (Hoboken). 2017-12

[3]
Mouse odontogenesis in vitro: the cap-stage mesenchyme controls individual molar crown morphogenesis.

Int J Dev Biol. 1999-5

[4]
Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists.

Dev Biol. 2016-12-1

[5]
Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis.

Dev Biol. 2004-6-1

[6]
The primary enamel knot determines the position of the first buccal cusp in developing mice molars.

Differentiation. 2007-6

[7]
Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs.

Dev Biol. 2010-1-25

[8]
Developmental variability channels mouse molar evolution.

Elife. 2020-2-12

[9]
[PAIRWISE CROSS-SPECIES TRANSCRIPTOME ANALYSIS OF POLYPLOIDY-ASSOCIATED EXPRESSION CHANGES OF DEVELOPMENTAL GENE MODULES].

Tsitologiia. 2015

[10]
Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth.

Dev Dyn. 2004-9

引用本文的文献

[1]
Transcriptomic atlas throughout Coccidioides development reveals key phase-enriched transcripts of this important fungal pathogen.

PLoS Biol. 2025-4-15

[2]
Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation.

Nat Commun. 2025-1-17

[3]
Transcriptomic atlas of the morphologic development of the fungal pathogen reveals key phase-enriched transcripts.

bioRxiv. 2024-10-14

[4]
PRX1-positive mesenchymal stem cells drive molar morphogenesis.

Int J Oral Sci. 2024-2-19

[5]
Real age prediction from the transcriptome with RAPToR.

Nat Methods. 2022-8

[6]
Comparative transcriptome profiles of human dental pulp stem cells from maxillary and mandibular teeth.

Sci Rep. 2022-5-25

[7]
System-level analyses of keystone genes required for mammalian tooth development.

J Exp Zool B Mol Dev Evol. 2021-1

[8]
Towards reconstructing the ancestral brain gene-network regulating caste differentiation in ants.

Nat Ecol Evol. 2018-10-22

[9]
Methylation of Cdkn1c may be involved in the regulation of tooth development through cell cycle inhibition.

J Mol Histol. 2018-7-16

[10]
Transcriptional correlates of proximal-distal identify and regeneration timing in axolotl limbs.

Comp Biochem Physiol C Toxicol Pharmacol. 2017-10-26

本文引用的文献

[1]
An integrative transcriptomic atlas of organogenesis in human embryos.

Elife. 2016-8-24

[2]
Resolving early mesoderm diversification through single-cell expression profiling.

Nature. 2016-7-14

[3]
Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.

PLoS Biol. 2016-3-4

[4]
The mid-developmental transition and the evolution of animal body plans.

Nature. 2016-3-31

[5]
Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells.

Genome Res. 2015-12

[6]
Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells.

Genome Biol. 2015-9-21

[7]
Reconstructing and analysing cellular states, space and time from gene expression profiles of many cells and single cells.

Mol Biosyst. 2015-10

[8]
Sprouty gene dosage influences temporal-spatial dynamics of primary enamel knot formation.

BMC Dev Biol. 2015-4-22

[9]
What to compare and how: Comparative transcriptomics for Evo-Devo.

J Exp Zool B Mol Dev Evol. 2015-6

[10]
Mapping the global mRNA transcriptome during development of the murine first molar.

Front Genet. 2015-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索