Silva Mariana, Pérez-Quintanilla Damián, Morante-Zarcero Sonia, Sierra Isabel, Marina María Luisa, Aturki Zeineb, Fanali Salvatore
Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; Institute of Chemical Methodologies, Italian National Council of Research, Area della Ricerca di Roma, Via Salaria Km 29, 300-00015 Monterotondo Scalo, Rome, Italy.
Departamento de Tecnología Química y Energética, Tecnología Química y Ambiental, Tecnología Mecánica y Química Analítica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
J Chromatogr A. 2017 Mar 24;1490:166-176. doi: 10.1016/j.chroma.2017.02.012. Epub 2017 Feb 9.
In this paper a chiral stationary phase (CSP) was prepared by the immobilization of a β-CD derivative (3,5-dimethylphenylcarbamoylated β-CD) onto the surface of amino-functionalized spherical ordered mesoporous silica (denoted as SM) via a urea linkage using the Staudinger reaction. The CSP was packed into fused silica capillaries 100μm I.D. and evaluated by means of nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) using model compounds for the enantio- and the diastereomeric separation. The compounds flavanone, 2'-hydroxyflavanone, 4'-hydroxyflavanone, 6-hydroxyflavanone, 4'-methoxyflavanone, 7-methoxyflavanone, hesperetin, hesperidin, naringenin, and naringin were studied using reversed and polar organic elution modes. Baseline stereoisomer resolution and good results in terms of peak efficiency and short analysis time of all studied flavonoids and flavanones glycosides were achieved in reversed phase mode, using as mobile phase a mixture of MeOH/HO, 10mM ammonium acetate pH 4.5 at different ratios. For the polar organic mode using 100% of MeOH as mobile phase, the CSP showed better performances and the baseline chiral separation of several studied compounds occurred in an analysis time of less than 10min. Good results were also achieved by CEC employing two different mobile phases. The use of MeOH/HO, 5mM ammonium acetate buffer pH 6.0 (90/10, v/v) was very effective for the chiral resolution of flavanone and its methoxy and hydroxy derivatives.
本文通过使用施陶丁格反应,经由脲键将β - 环糊精衍生物(3,5 - 二甲基苯基氨基甲酰化β - 环糊精)固定在氨基功能化球形有序介孔二氧化硅(记为SM)表面,制备了一种手性固定相(CSP)。将该CSP填充到内径为100μm的熔融石英毛细管中,并通过纳米液相色谱(nano - LC)和毛细管电色谱(CEC),使用用于对映体和非对映体分离的模型化合物进行评估。使用反相和极性有机洗脱模式研究了化合物黄烷酮、2'-羟基黄烷酮、4'-羟基黄烷酮、6 - 羟基黄烷酮、4'-甲氧基黄烷酮、7 - 甲氧基黄烷酮、橙皮素、橙皮苷、柚皮素和柚皮苷。在反相模式下,使用不同比例的MeOH/H₂O、10mM醋酸铵pH 4.5的混合物作为流动相,所有研究的黄酮类和黄烷酮糖苷均实现了基线立体异构体分离,并且在峰效率和短分析时间方面取得了良好结果。对于使用100% MeOH作为流动相的极性有机模式,CSP表现出更好的性能,几种研究化合物在不到10分钟的分析时间内实现了基线手性分离。使用两种不同流动相的CEC也取得了良好结果。使用MeOH/H₂O、5mM醋酸铵缓冲液pH 6.0(90/10,v/v)对黄烷酮及其甲氧基和羟基衍生物的手性拆分非常有效。