Suppr超能文献

功能获得性突变会引发血细胞减少、免疫缺陷、骨髓增生异常综合征及神经症状的综合征。

Gain-of-function mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms.

作者信息

Tesi Bianca, Davidsson Josef, Voss Matthias, Rahikkala Elisa, Holmes Tim D, Chiang Samuel C C, Komulainen-Ebrahim Jonna, Gorcenco Sorina, Rundberg Nilsson Alexandra, Ripperger Tim, Kokkonen Hannaleena, Bryder David, Fioretos Thoas, Henter Jan-Inge, Möttönen Merja, Niinimäki Riitta, Nilsson Lars, Pronk Cornelis Jan, Puschmann Andreas, Qian Hong, Uusimaa Johanna, Moilanen Jukka, Tedgård Ulf, Cammenga Jörg, Bryceson Yenan T

机构信息

Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.

Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.

出版信息

Blood. 2017 Apr 20;129(16):2266-2279. doi: 10.1182/blood-2016-10-743302. Epub 2017 Feb 15.

Abstract

Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied 2 families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in , a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the 2 identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the 10 individuals identified who were heterozygous for either mutation, 3 developed MDS upon loss of the mutated allele following intracellular infections associated with myeloid, B-, and natural killer (NK)-cell deficiency. Five other individuals, 3 with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q, with loss of the mutated allele or additional in truncating mutations. Examination of 1 individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34 hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-α or IFN-γ induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in 3 individuals. Two carriers also harbored a rare, in germ line missense loss-of-function variant, potentially counteracting the mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with -7/del(7q), whereas hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.

摘要

最近已确定了几种家族性骨髓增生异常综合征(MDS)的单基因病因。我们研究了2个患有血细胞减少症、易患伴有7号染色体畸变的MDS、免疫缺陷和进行性小脑功能障碍的家族。基因研究发现位于7号染色体长臂上的肿瘤抑制基因 存在杂合错义突变。与功能获得效应一致,相对于野生型蛋白,2种已鉴定的SAMD9L突变体的异位表达降低了细胞增殖。在鉴定出的10名对任一 突变呈杂合状态的个体中,3人在与髓系、B细胞和自然杀伤(NK)细胞缺陷相关的细胞内感染后,因突变的 等位基因缺失而发展为MDS。另外5名个体,其中3名在婴儿期血细胞减少症发作自发缓解,通过7号染色体长臂单亲二体性存在造血回复嵌合体,突变等位基因缺失或 存在额外的截断突变。对1名个体的检查表明,体细胞回复是在出生后选择的。体细胞突变追踪到CD34造血祖细胞群体,在B细胞和NK细胞中进一步富集。用干扰素(IFN)-α或IFN-γ刺激这些细胞类型可诱导SAMD9L表达。临床上,回复嵌合体与较轻的疾病相关,但3名个体的神经学表现持续存在。2名携带者还携带一种罕见的、种系 错义功能丧失变体,可能抵消 突变。我们的结果表明,肿瘤抑制基因 的功能获得性突变导致血细胞减少症、免疫缺陷、可变的神经学表现以及易患伴有-7/del(7q)的MDS,而造血回复嵌合体通常可改善临床表现。这些发现提示SAMD9L在调节IFN驱动的、需求适应性造血中起作用。

相似文献

1
Gain-of-function mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms.
Blood. 2017 Apr 20;129(16):2266-2279. doi: 10.1182/blood-2016-10-743302. Epub 2017 Feb 15.
2
Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L.
Am J Hum Genet. 2016 Jun 2;98(6):1146-1158. doi: 10.1016/j.ajhg.2016.04.009.
3
SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies.
Leukemia. 2018 May;32(5):1106-1115. doi: 10.1038/s41375-018-0074-4. Epub 2018 Feb 25.
4
Constitutional mutations cause familial myelodysplastic syndrome and transient monosomy 7.
Haematologica. 2018 Mar;103(3):427-437. doi: 10.3324/haematol.2017.180778. Epub 2017 Dec 7.
5
Of gains and losses: SAMD9/SAMD9L and monosomy 7 in myelodysplastic syndrome.
Exp Hematol. 2024 Jun;134:104217. doi: 10.1016/j.exphem.2024.104217. Epub 2024 Apr 20.
6
8
Outcomes of Hematopoietic Cell Transplantation in Patients with Germline SAMD9/SAMD9L Mutations.
Biol Blood Marrow Transplant. 2019 Nov;25(11):2186-2196. doi: 10.1016/j.bbmt.2019.07.007. Epub 2019 Jul 12.
10
[Association between SAMD9/SAMD9L and hematological malignancies].
Rinsho Ketsueki. 2018;59(11):2475-2480. doi: 10.11406/rinketsu.59.2475.

引用本文的文献

1
Clinical and genetic features of UNC13D deficiency with hypogammaglobulinemia.
Front Immunol. 2025 Aug 18;16:1628507. doi: 10.3389/fimmu.2025.1628507. eCollection 2025.
3
Structural and functional studies of rabbit SAMD9 reveal a distinct tRNase module that underlies the antiviral activity.
PLoS Pathog. 2025 Jul 31;21(7):e1013118. doi: 10.1371/journal.ppat.1013118. eCollection 2025 Jul.
5
PRC2-mediated apoptosis evasion is a therapeutic target of MDS/AML harboring inv(3)/t(3;3) and monosomy 7.
Hemasphere. 2025 Jul 13;9(7):e70149. doi: 10.1002/hem3.70149. eCollection 2025 Jul.
6
Germline and somatic genetic landscape of pediatric myelodysplastic syndromes.
Haematologica. 2025 Jun 26. doi: 10.3324/haematol.2024.285700.
8
Genetic Predisposition to Hematologic Malignancies.
Cold Spring Harb Perspect Med. 2025 Feb 10. doi: 10.1101/cshperspect.a041585.
9
10
Clonal hematopoiesis in cancer predisposition syndromes.
Int J Hematol. 2024 Dec 6. doi: 10.1007/s12185-024-03878-x.

本文引用的文献

1
Adaptive NK cells can persist in patients with mutation depleted of stem and progenitor cells.
Blood. 2017 Apr 6;129(14):1927-1939. doi: 10.1182/blood-2016-08-734236. Epub 2017 Feb 16.
2
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
3
Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L.
Am J Hum Genet. 2016 Jun 2;98(6):1146-1158. doi: 10.1016/j.ajhg.2016.04.009.
4
Hereditary Predispositions to Myelodysplastic Syndrome.
Int J Mol Sci. 2016 May 30;17(6):838. doi: 10.3390/ijms17060838.
6
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
Blood. 2016 May 19;127(20):2391-405. doi: 10.1182/blood-2016-03-643544. Epub 2016 Apr 11.
7
Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents.
Blood. 2016 Mar 17;127(11):1387-97; quiz 1518. doi: 10.1182/blood-2015-09-669937. Epub 2015 Dec 23.
8
Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans.
Clin Immunol. 2017 Apr;177:29-42. doi: 10.1016/j.clim.2015.11.004. Epub 2015 Dec 1.
9
Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia.
Blood. 2015 Nov 26;126(22):2484-90. doi: 10.1182/blood-2015-04-641100. Epub 2015 Oct 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验