Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
Leukemia. 2021 Nov;35(11):3232-3244. doi: 10.1038/s41375-021-01212-6. Epub 2021 Mar 17.
Pediatric myelodysplastic syndromes (MDS) are a heterogeneous disease group associated with impaired hematopoiesis, bone marrow hypocellularity, and frequently have deletions involving chromosome 7 (monosomy 7). We and others recently identified heterozygous germline mutations in SAMD9 and SAMD9L in children with monosomy 7 and MDS. We previously demonstrated an antiproliferative effect of these gene products in non-hematopoietic cells, which was exacerbated by their patient-associated mutations. Here, we used a lentiviral overexpression approach to assess the functional impact and underlying cellular processes of wild-type and mutant SAMD9 or SAMD9L in primary mouse or human hematopoietic stem and progenitor cells (HSPC). Using a combination of protein interactome analyses, transcriptional profiling, and functional validation, we show that SAMD9 and SAMD9L are multifunctional proteins that cause profound alterations in cell cycle, cell proliferation, and protein translation in HSPCs. Importantly, our molecular and functional studies also demonstrated that expression of these genes and their mutations leads to a cellular environment that promotes DNA damage repair defects and ultimately apoptosis in hematopoietic cells. This study provides novel functional insights into SAMD9 and SAMD9L and how their mutations can potentially alter hematopoietic function and lead to bone marrow hypocellularity, a hallmark of pediatric MDS.
儿科骨髓增生异常综合征(MDS)是一组异质性疾病,与造血功能受损、骨髓细胞减少有关,并且经常存在涉及染色体 7(单体 7)的缺失。我们和其他人最近在单体 7 和 MDS 的儿童中发现了 SAMD9 和 SAMD9L 的杂合性种系突变。我们之前证明了这些基因产物在非造血细胞中的抗增殖作用,而其与患者相关的突变使其作用加剧。在这里,我们使用慢病毒过表达方法来评估野生型和突变型 SAMD9 或 SAMD9L 在原发性小鼠或人类造血干细胞和祖细胞(HSPC)中的功能影响和潜在的细胞过程。通过蛋白质互作分析、转录谱分析和功能验证的组合,我们表明 SAMD9 和 SAMD9L 是多功能蛋白,它们在 HSPC 中引起细胞周期、细胞增殖和蛋白质翻译的深刻改变。重要的是,我们的分子和功能研究还表明,这些基因的表达及其突变导致细胞环境促进造血细胞中的 DNA 损伤修复缺陷,并最终导致细胞凋亡。这项研究为 SAMD9 和 SAMD9L 提供了新的功能见解,以及它们的突变如何潜在地改变造血功能并导致骨髓细胞减少,这是儿科 MDS 的一个标志。