Suppr超能文献

椭圆囊终扣传入神经模型:传入神经 - 毛细胞连接在决定放电序列规律性中的作用

Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity.

作者信息

Holmes William R, Huwe Janice A, Williams Barbara, Rowe Michael H, Peterson Ellengene H

机构信息

Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio

Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio.

出版信息

J Neurophysiol. 2017 May 1;117(5):1969-1986. doi: 10.1152/jn.00895.2016. Epub 2017 Feb 15.

Abstract

Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents. Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational modeling provides insights into how morphology impacts excitability and also reveals a new explanation for spike train irregularity based on relative numbers of multiple bouton contacts per hair cell. This mechanism is independent of other proposed mechanisms for spike train irregularity based on ionic conductances and can explain irregularity in dimorphic units and calyx endings.

摘要

根据其位置和终末分支结构,海龟椭圆囊中的前庭终扣传入神经末梢可分为四种类型:外侧纹外(LES)、纹状区、近纹状区和内侧纹外(MES)。这些传入神经的终末分支在表面积、总长度、收集面积、终扣数量、每个毛细胞的终扣接触数量以及轴突直径等方面存在差异(休伊 JA、洛根 CJ、威廉姆斯 B、罗 MH、彼得森 EH。113: 2420 - 2433,2015)。为了了解终末形态差异以及由此产生的毛细胞输入如何影响传入神经的反应特性,我们使用重建的终扣传入神经,对每个区域的代表性传入神经进行了建模。收集面积和毛细胞密度用于估计毛细胞与传入神经的汇聚情况。非形态学特征保持恒定,以分离传入神经结构和连接性的影响。模型表明,所有四种终扣传入神经类型在电紧张方面都是紧密的,并且兴奋性突触后电位在 MES 传入神经中比在其他传入神经中要大两到四倍,这使得 MES 传入神经对低输入水平更敏感。模型还预测,MES 和 LES 终末结构允许比纹状区和近纹状区更高的自发放电率。我们发现,放电序列规律性的差异本身并非外周终末结构差异的结果,而是传入神经与单个毛细胞之间多个接触的比例更高会增加传入神经放电的不规则性。每个毛细胞主要有一个终扣接触的传入神经比每个毛细胞有多个终扣接触的传入神经放电更规律这一预测,对双形和花萼传入神经的放电序列规律性具有启示意义。海龟椭圆囊不同区域的终扣传入神经具有非常不同的形态以及传入神经 - 毛细胞连接性。高度详细的计算建模为形态学如何影响兴奋性提供了见解,并且还基于每个毛细胞多个终扣接触的相对数量,揭示了对放电序列不规则性的一种新解释。这种机制独立于基于离子电导提出的其他放电序列不规则性机制,并且可以解释双形单元和花萼末梢中的不规则性。

相似文献

1
Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity.
J Neurophysiol. 2017 May 1;117(5):1969-1986. doi: 10.1152/jn.00895.2016. Epub 2017 Feb 15.
2
Utricular afferents: morphology of peripheral terminals.
J Neurophysiol. 2015 Apr 1;113(7):2420-33. doi: 10.1152/jn.00481.2014. Epub 2015 Jan 28.
4
Afferent innervation of the utricular macula in pigeons.
J Neurophysiol. 2003 Mar;89(3):1660-77. doi: 10.1152/jn.00690.2002.
6
Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus.
J Comp Neurol. 1994 Apr 8;342(2):279-98. doi: 10.1002/cne.903420210.
7
The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula.
J Neurophysiol. 1990 Apr;63(4):767-80. doi: 10.1152/jn.1990.63.4.767.
8
Development of otolith receptors in Japanese quail.
Dev Neurobiol. 2010 May;70(6):436-55. doi: 10.1002/dneu.20787.
9
Afferent innervation patterns of the saccule in pigeons.
J Neurophysiol. 2003 Jan;89(1):534-50. doi: 10.1152/jn.00817.2001.
10
Persistent and resurgent Na currents in vestibular calyx afferents.
J Neurophysiol. 2020 Aug 1;124(2):510-524. doi: 10.1152/jn.00124.2020. Epub 2020 Jul 15.

引用本文的文献

1
Anatomical and molecular insights into avian inner ear sensory hair cell regeneration.
Dev Biol. 2025 Sep;525:13-25. doi: 10.1016/j.ydbio.2025.05.021. Epub 2025 May 23.
2
Cholinergic Modulation of Membrane Properties of Calyx Terminals in the Vestibular Periphery.
Neuroscience. 2021 Jan 1;452:98-110. doi: 10.1016/j.neuroscience.2020.10.035. Epub 2020 Nov 13.
3
Efferent synaptic transmission at the vestibular type II hair cell synapse.
J Neurophysiol. 2020 Aug 1;124(2):360-374. doi: 10.1152/jn.00143.2020. Epub 2020 Jul 1.
4
Efferent Inputs Are Required for Normal Function of Vestibular Nerve Afferents.
J Neurosci. 2019 Aug 28;39(35):6922-6935. doi: 10.1523/JNEUROSCI.0237-19.2019. Epub 2019 Jul 8.
5
Enhanced Activation of HCN Channels Reduces Excitability and Spike-Timing Regularity in Maturing Vestibular Afferent Neurons.
J Neurosci. 2019 Apr 10;39(15):2860-2876. doi: 10.1523/JNEUROSCI.1811-18.2019. Epub 2019 Jan 29.

本文引用的文献

1
Is realistic neuronal modeling realistic?
J Neurophysiol. 2016 Nov 1;116(5):2180-2209. doi: 10.1152/jn.00360.2016. Epub 2016 Aug 17.
3
Hair cell-type dependent expression of basolateral ion channels shapes response dynamics in the frog utricle.
Front Cell Neurosci. 2015 Sep 7;9:338. doi: 10.3389/fncel.2015.00338. eCollection 2015.
4
The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx.
J Neurophysiol. 2015 Jun 1;113(10):3827-35. doi: 10.1152/jn.00055.2015. Epub 2015 Apr 15.
5
Utricular afferents: morphology of peripheral terminals.
J Neurophysiol. 2015 Apr 1;113(7):2420-33. doi: 10.1152/jn.00481.2014. Epub 2015 Jan 28.
6
Glutamatergic signaling at the vestibular hair cell calyx synapse.
J Neurosci. 2014 Oct 29;34(44):14536-50. doi: 10.1523/JNEUROSCI.0369-13.2014.
7
Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5421-6. doi: 10.1073/pnas.1319561111. Epub 2014 Mar 25.
8
I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model.
J Assoc Res Otolaryngol. 2014 Aug;15(4):585-99. doi: 10.1007/s10162-014-0446-z. Epub 2014 Feb 21.
9
Discharge regularity in the turtle posterior crista: comparisons between experiment and theory.
J Neurophysiol. 2013 Dec;110(12):2830-48. doi: 10.1152/jn.00195.2013. Epub 2013 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验