Suppr超能文献

从海龟听觉毛细胞传入纤维的反应特性来看,尖峰的产生是由突触间和突触内的同步释放驱动的。

Response properties from turtle auditory hair cell afferent fibers suggest spike generation is driven by synchronized release both between and within synapses.

机构信息

Department of Otolaryngology, Stanford University School of Medicine, Stanford, California 94304, USA.

出版信息

J Neurophysiol. 2013 Jul;110(1):204-20. doi: 10.1152/jn.00121.2013. Epub 2013 Apr 17.

Abstract

Inner ear hair cell afferent fiber synapses are capable of transferring information at high rates for long periods of time with extraordinary fidelity. As at other sensory synapses, hair cells rely on graded receptor potentials and unique vesicle trafficking and release properties of ribbon synapses to relay intensity information. Postsynaptic recordings from afferent fibers of the turtle auditory papilla identified excitatory postsynaptic currents (EPSCs) that were fast AMPA receptor-based responses with rapid onset and decay times. EPSCs varied in amplitude by ≈ 15× per fiber, with kinetics that showed a tendency to slow at larger amplitudes. Complex EPSCs were produced by temporal summation of single events, likely across synapses. Complex EPSCs were more efficient at generating action potentials than single EPSCs. Potassium-evoked release increased the frequency of EPSCs, in particular complex events, but did not increase EPSC amplitudes. Temporal summation of EPSCs across synapses may underlie action potential generation at these synapses. Broad amplitude histograms were probed for mechanisms of multivesicular release with reduced external Ca(2+) or the introduction of Cd(2+) or Sr(2+) to uncouple release. The results are consistent with broad amplitude histograms being generated by a combination of the variability in synaptic vesicle size and coordinated release of these vesicles. It is posited that multivesicular release plays less of a role in multisynaptic ribbon synapses than in single synaptic afferent fibers.

摘要

内耳毛细胞传入纤维突触能够以极高的速率和非凡的保真度长时间传递信息。与其他感觉突触一样,毛细胞依赖于分级受体电位和独特的囊泡运输和释放特性来传递强度信息。从海龟听觉乳头传入纤维的突触后记录中鉴定出兴奋性突触后电流 (EPSC),其是具有快速起始和衰减时间的快速 AMPA 受体反应。EPSC 的幅度在每个纤维之间变化约 15 倍,动力学表现出在较大幅度下趋于变慢的趋势。通过单个事件的时间总和产生复杂的 EPSC,可能跨越突触。复杂的 EPSC 比单个 EPSC 更有效地产生动作电位。钾诱发的释放增加了 EPSC 的频率,特别是复杂事件,但不会增加 EPSC 的幅度。突触之间的 EPSC 时间总和可能是这些突触产生动作电位的基础。通过减少外部 Ca(2+)或引入 Cd(2+)或 Sr(2+)来解除释放耦联,探究了宽幅度直方图的多泡释放机制。结果与宽幅度直方图是由突触囊泡大小的变化和这些囊泡的协调释放组合产生的结果一致。据推测,多泡释放在多突触带状突触中的作用不如在单个突触传入纤维中重要。

相似文献

2
Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse.
J Neurosci. 2010 Mar 24;30(12):4210-20. doi: 10.1523/JNEUROSCI.4439-09.2010.
3
Transmitter release at the hair cell ribbon synapse.
Nat Neurosci. 2002 Feb;5(2):147-54. doi: 10.1038/nn796.
4
The unitary event underlying multiquantal EPSCs at a hair cell's ribbon synapse.
J Neurosci. 2009 Jun 10;29(23):7558-68. doi: 10.1523/JNEUROSCI.0514-09.2009.
5
Resolution of subcomponents of synaptic release from postsynaptic currents in rat hair-cell/auditory-nerve fiber synapses.
J Neurophysiol. 2021 Jun 1;125(6):2444-2460. doi: 10.1152/jn.00450.2020. Epub 2021 May 5.
6
The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx.
J Neurophysiol. 2015 Jun 1;113(10):3827-35. doi: 10.1152/jn.00055.2015. Epub 2015 Apr 15.
7
9
Calcium-induced calcium release supports recruitment of synaptic vesicles in auditory hair cells.
J Neurophysiol. 2016 Jan 1;115(1):226-39. doi: 10.1152/jn.00559.2015. Epub 2015 Oct 28.
10
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts.
J Neurosci. 2019 Sep 11;39(37):7260-7276. doi: 10.1523/JNEUROSCI.2510-18.2019. Epub 2019 Jul 17.

引用本文的文献

1
Bridging the gap between presynaptic hair cell function and neural sound encoding.
Elife. 2024 Dec 24;12:RP93749. doi: 10.7554/eLife.93749.
2
Resolution of subcomponents of synaptic release from postsynaptic currents in rat hair-cell/auditory-nerve fiber synapses.
J Neurophysiol. 2021 Jun 1;125(6):2444-2460. doi: 10.1152/jn.00450.2020. Epub 2021 May 5.
3
4
Encoding sound in the cochlea: from receptor potential to afferent discharge.
J Physiol. 2021 May;599(10):2527-2557. doi: 10.1113/JP279189. Epub 2021 Mar 29.
5
Phase-Locking Requires Efficient Ca Extrusion at the Auditory Hair Cell Ribbon Synapse.
J Neurosci. 2021 Feb 24;41(8):1625-1635. doi: 10.1523/JNEUROSCI.1324-18.2020. Epub 2021 Jan 14.
6
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts.
J Neurosci. 2019 Sep 11;39(37):7260-7276. doi: 10.1523/JNEUROSCI.2510-18.2019. Epub 2019 Jul 17.
7
Disruption of Otoferlin Alters the Mode of Exocytosis at the Mouse Inner Hair Cell Ribbon Synapse.
Front Mol Neurosci. 2019 Jan 9;11:492. doi: 10.3389/fnmol.2018.00492. eCollection 2018.
9
A circuit for detection of interaural time differences in the nucleus laminaris of turtles.
J Exp Biol. 2017 Nov 15;220(Pt 22):4270-4281. doi: 10.1242/jeb.164145. Epub 2017 Sep 25.
10
Ca-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse.
J Neurosci. 2017 Jun 21;37(25):6162-6175. doi: 10.1523/JNEUROSCI.3644-16.2017. Epub 2017 May 24.

本文引用的文献

1
Synaptic ribbons influence the size and frequency of miniature-like evoked postsynaptic currents.
Neuron. 2013 Feb 6;77(3):516-27. doi: 10.1016/j.neuron.2012.11.024.
2
3
Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea.
J Neurosci. 2012 Apr 4;32(14):4773-89. doi: 10.1523/JNEUROSCI.4511-11.2012.
4
6
Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis.
J Neurosci. 2011 Mar 30;31(13):4886-95. doi: 10.1523/JNEUROSCI.5122-10.2011.
9
The diverse roles of ribbon synapses in sensory neurotransmission.
Nat Rev Neurosci. 2010 Dec;11(12):812-22. doi: 10.1038/nrn2924. Epub 2010 Nov 3.
10
Control of exocytosis by synaptotagmins and otoferlin in auditory hair cells.
J Neurosci. 2010 Oct 6;30(40):13281-90. doi: 10.1523/JNEUROSCI.2528-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验