Suppr超能文献

发育性髓鞘形成过程中及疾病状态下少突胶质细胞中的DNA甲基化

DNA methylation in oligodendroglial cells during developmental myelination and in disease.

作者信息

Moyon Sarah, Casaccia Patrizia

机构信息

Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY, USA.

Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative Advanced Science Research Center, CUNY, New York, NY, USA.

出版信息

Neurogenesis (Austin). 2017 Jan 31;4(1):e1270381. doi: 10.1080/23262133.2016.1270381. eCollection 2017.

Abstract

Oligodendrocyte progenitor cells (OPC) are the myelinating cells of the central nervous system (CNS). During development, they differentiate into mature oligodendrocytes (OL) and ensheath axons, providing trophic and functional support to the neurons. This process is regulated by the dynamic expression of specific transcription factors, which, in turn, is controlled by epigenetic marks such as DNA methylation. Here we discuss recent findings showing that DNA methylation levels are differentially regulated in the oligodendrocyte lineage during developmental myelination, affecting both genes expression and alternative splicing events. Based on the phenotypic characterization of mice with genetic ablation of DNA methyltransferase 1 () we conclude that DNA methylation is critical for efficient OPC expansion and for developmental myelination. Previous work suggests that in the context of diseases such as multiple sclerosis (MS) or gliomas, DNA methylation is differentially regulated in the CNS of affected individuals compared with healthy controls. In this commentary, based on the results of previous work, we propose the potential role of DNA methylation in adult oligodendroglial lineage cells in physiologic and pathological conditions, and delineate potential research approaches to be undertaken to test this hypothesis. A better understanding of this epigenetic modification in adult oligodendrocyte progenitor cells is essential, as it can potentially result in the design of new therapeutic strategies to enhance remyelination in MS patients or reduce proliferation in glioma patients.

摘要

少突胶质前体细胞(OPC)是中枢神经系统(CNS)的髓鞘形成细胞。在发育过程中,它们分化为成熟的少突胶质细胞(OL)并包裹轴突,为神经元提供营养和功能支持。这一过程受特定转录因子动态表达的调控,而转录因子的表达又受DNA甲基化等表观遗传标记的控制。在此,我们讨论最近的研究发现,即在发育性髓鞘形成过程中,少突胶质细胞谱系中的DNA甲基化水平受到差异调节,这影响了基因表达和可变剪接事件。基于DNA甲基转移酶1()基因敲除小鼠的表型特征,我们得出结论,DNA甲基化对于少突胶质前体细胞的有效扩增和发育性髓鞘形成至关重要。先前的研究表明,在诸如多发性硬化症(MS)或神经胶质瘤等疾病的背景下,与健康对照相比,受影响个体中枢神经系统中的DNA甲基化受到差异调节。在本评论中,基于先前工作的结果,我们提出了DNA甲基化在生理和病理条件下对成年少突胶质细胞谱系细胞的潜在作用,并描述了为验证这一假设而可能采取的研究方法。深入了解成年少突胶质前体细胞中的这种表观遗传修饰至关重要,因为这可能会促成设计新的治疗策略,以增强MS患者的髓鞘再生或减少神经胶质瘤患者的细胞增殖。

相似文献

1
DNA methylation in oligodendroglial cells during developmental myelination and in disease.
Neurogenesis (Austin). 2017 Jan 31;4(1):e1270381. doi: 10.1080/23262133.2016.1270381. eCollection 2017.
2
Sox2 Is Essential for Oligodendroglial Proliferation and Differentiation during Postnatal Brain Myelination and CNS Remyelination.
J Neurosci. 2018 Feb 14;38(7):1802-1820. doi: 10.1523/JNEUROSCI.1291-17.2018. Epub 2018 Jan 15.
4
Oligodendrocyte Development and Regenerative Therapeutics in Multiple Sclerosis.
Life (Basel). 2021 Apr 9;11(4):327. doi: 10.3390/life11040327.
5
Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination.
Life (Basel). 2021 Jan 15;11(1):62. doi: 10.3390/life11010062.
6
Activation of oligodendroglial Stat3 is required for efficient remyelination.
Neurobiol Dis. 2016 Jul;91:336-46. doi: 10.1016/j.nbd.2016.03.023. Epub 2016 Apr 6.
7
Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.
J Neurosci. 2017 Oct 18;37(42):10038-10051. doi: 10.1523/JNEUROSCI.1787-17.2017. Epub 2017 Sep 12.
8
miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation.
Front Cell Dev Biol. 2016 Jun 17;4:59. doi: 10.3389/fcell.2016.00059. eCollection 2016.
9
Age-related Changes in the Global DNA Methylation Profile of Oligodendrocyte Progenitor Cells Derived from Rat Spinal Cords.
Curr Med Sci. 2019 Feb;39(1):67-74. doi: 10.1007/s11596-019-2001-y. Epub 2019 Mar 13.
10
Teriflunomide promotes oligodendroglial differentiation and myelination.
J Neuroinflammation. 2018 Mar 13;15(1):76. doi: 10.1186/s12974-018-1110-z.

引用本文的文献

1
The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration.
Acta Neuropathol Commun. 2023 Jun 29;11(1):106. doi: 10.1186/s40478-023-01607-9.
3
Editorial: Neuroepigenetics of Neuropsychiatric Disease-Hope, Success and Obstacles for Translational Findings and Applications.
Front Neurosci. 2022 Apr 1;16:886695. doi: 10.3389/fnins.2022.886695. eCollection 2022.
5
OLIG2 regulates lncRNAs and its own expression during oligodendrocyte lineage formation.
BMC Biol. 2021 Jun 25;19(1):132. doi: 10.1186/s12915-021-01057-6.
6
The BHMT-betaine methylation pathway epigenetically modulates oligodendrocyte maturation.
PLoS One. 2021 May 11;16(5):e0250486. doi: 10.1371/journal.pone.0250486. eCollection 2021.
8
Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders.
Cell Mol Life Sci. 2021 May;78(10):4615-4637. doi: 10.1007/s00018-021-03802-0. Epub 2021 Mar 10.
9
Sphingosine-1-Phosphate Receptor Modulators and Oligodendroglial Cells: Beyond Immunomodulation.
Int J Mol Sci. 2020 Oct 13;21(20):7537. doi: 10.3390/ijms21207537.
10
Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases.
F1000Res. 2020 Feb 11;9. doi: 10.12688/f1000research.20904.1. eCollection 2020.

本文引用的文献

1
CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter.
Oncotarget. 2016 Jul 19;7(29):46545-46556. doi: 10.18632/oncotarget.10234.
2
Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation.
Biol Open. 2016 Jun 15;5(6):866-74. doi: 10.1242/bio.019067.
3
Functional Characterization of DNA Methylation in the Oligodendrocyte Lineage.
Cell Rep. 2016 Apr 26;15(4):748-760. doi: 10.1016/j.celrep.2016.03.060. Epub 2016 Apr 14.
4
Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination.
Nat Neurosci. 2016 May;19(5):678-689. doi: 10.1038/nn.4258. Epub 2016 Feb 29.
5
Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14840-5. doi: 10.1073/pnas.1506760112. Epub 2015 Nov 17.
7
SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors.
Brain Res. 2016 May 1;1638(Pt B):167-182. doi: 10.1016/j.brainres.2015.07.024. Epub 2015 Jul 29.
8
Altered PLP1 splicing causes hypomyelination of early myelinating structures.
Ann Clin Transl Neurol. 2015 Jun;2(6):648-61. doi: 10.1002/acn3.203. Epub 2015 May 1.
9
Epigenetics in NG2 glia cells.
Brain Res. 2016 May 1;1638(Pt B):183-198. doi: 10.1016/j.brainres.2015.06.009. Epub 2015 Jun 17.
10
HP1 is involved in regulating the global impact of DNA methylation on alternative splicing.
Cell Rep. 2015 Feb 24;10(7):1122-34. doi: 10.1016/j.celrep.2015.01.038. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验