Suppr超能文献

O(D) + H反应的低温实验速率常数和理论速率常数

Low-Temperature Experimental and Theoretical Rate Constants for the O(D) + H Reaction.

作者信息

Hickson Kevin M, Suleimanov Yury V

机构信息

Institut des Sciences Moléculaires, Université de Bordeaux , F-33400 Talence, France.

Institut des Sciences Moléculaires, CNRS , F-33400 Talence, France.

出版信息

J Phys Chem A. 2017 Mar 9;121(9):1916-1923. doi: 10.1021/acs.jpca.7b00722. Epub 2017 Feb 27.

Abstract

In the present joint experimental and theoretical study, we report thermal rate constants for the O(D) + H reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O(D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O(D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1A' and 1A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1A' ground state and that contribution of the 1A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1A' and 2A' surfaces.

摘要

在当前的联合实验与理论研究中,我们报告了50 - 300 K温度范围内O(D) + H反应的热速率常数。实验动力学测量是使用连续超声速流动反应器进行的,该反应器与用于产生O(D)的脉冲激光光解以及用于检测O(D)的真空紫外波长范围的脉冲激光诱导荧光(VUV LIF)相结合。理论速率常数是使用环形聚合物分子动力学(RPMD)方法在两个最低势能面1A'和1A″上获得的,这两个势能面分别具有无障碍和热激活的能量分布。实验和理论速率常数均表现出较弱的温度依赖性。理论结果表明1A'基态起主导作用,并且在较低温度下,1A″激发态对总热速率的贡献急剧下降。实验结果与理论结果吻合良好,差异不超过25%。据认为,这些差异可能是由于1A'和2A'表面之间的非绝热耦合所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验