Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States.
Department of Microbiology and Immunology, University of Rochester , Rochester, New York 14642, United States.
Langmuir. 2017 Mar 14;33(10):2596-2602. doi: 10.1021/acs.langmuir.6b04295. Epub 2017 Mar 1.
Semen-derived enhancer of virus infection (SEVI) fibrils are naturally abundant amyloid aggregates found in semen that facilitate viral attachment and internalization of human immunodeficiency virus (HIV) in cells, thereby increasing the probability of infection. Mature SEVI fibrils are composed of aggregated peptides exhibiting high β-sheet secondary structural characteristics. Herein, we show that polymers containing hydrophobic side chains can interact with SEVI and reduce its β-sheet content by ∼45% compared with the β-sheet content of SEVI in the presence of polymers with hydrophilic side chains, as estimated by polarization modulation-infrared reflectance absorption spectroscopy measurements. A nanoparticle (NP) formulation of this hydrophobic polymer reduced SEVI-mediated HIV infection in TMZ-bl cells by 60% compared with the control treatment. Although these NPs lacked specific amyloid-targeting groups, thus requiring high concentrations to observe biological activity, the use of hydrophobic interactions to alter the secondary structure of amyloids represents a useful approach to neutralizing the SEVI function. These results could, therefore, have general implications in the design of novel materials that can modify the activity of amyloids associated with a variety of other neurological and systemic diseases.
精源病毒感染增强子(SEVI)纤维是在精液中发现的天然丰富的淀粉样聚集物,可促进人类免疫缺陷病毒(HIV)在细胞中的附着和内化,从而增加感染的可能性。成熟的 SEVI 纤维由聚集的肽组成,表现出高β-折叠二级结构特征。本文研究表明,含有疏水侧链的聚合物可以与 SEVI 相互作用,并通过偏振调制-红外反射吸收光谱测量,与具有亲水性侧链的聚合物存在时相比,降低 SEVI 的β-折叠含量约 45%。这种疏水聚合物的纳米颗粒(NP)制剂使 TMZ-bl 细胞中的 SEVI 介导的 HIV 感染减少了 60%,与对照处理相比。尽管这些 NP 缺乏特定的淀粉样靶向基团,因此需要高浓度才能观察到生物活性,但利用疏水相互作用来改变淀粉样蛋白的二级结构是一种有效的中和 SEVI 功能的方法。因此,这些结果可能对设计能够改变与各种其他神经和系统性疾病相关的淀粉样蛋白活性的新型材料具有普遍意义。