Suppr超能文献

预测行走年龄健康分析仪。

Predictive Walking-Age Health Analyzer.

出版信息

IEEE J Biomed Health Inform. 2018 Mar;22(2):363-374. doi: 10.1109/JBHI.2017.2666603. Epub 2017 Feb 9.

Abstract

A simple, low-power and wearable health analyzer for early identification and management of some diseases is presented. To achieve this goal, we propose a walking pattern analysis system that uses features, such as speed, energy, turn ratio, and bipedal behavior to characterize and classify individuals in distinct walking-ages. A database is constructed from 74 healthy young adults in the age range from 18 to 60 years using the combination of inertial signals from an accelerometer and a gyroscope on a level path including turns. An efficient advanced signal decomposition method called improved complete ensemble empirical mode decomposition with adaptive noise (improved CEEMDAN) was used for feature extraction. Analyzes show that the gait of healthy able-bodied individuals exhibits a natural bipedal asymmetry to a certain level depending on the activity-type and age, which relate to individual's functional attributes rather than pathological gait. The analysis of turn ratio, a measure of activity-transition energy change and stability, indicated turning to be less locally stable than straight-line walking making it a more reliable measure for determining falls and other health issues. Extracted features were used to analyze two distinct walking-age groups of the healthy young adults based on their walking pattern, classifying 18-45 years old individuals in one group and 46-60 years old in the other group. Our proposed simple, inexpensive walking analyzer system can be easily used as an ambulatory screening tool by clinicians to identify at risk population at the early onset of some diseases.

摘要

我们提出了一种简单、低功耗且可穿戴的健康分析器,用于早期识别和管理某些疾病。为了实现这一目标,我们提出了一种步态分析系统,该系统使用速度、能量、转弯比和双足行为等特征来描述和分类不同步态年龄的个体。我们使用加速度计和陀螺仪的惯性信号在包括转弯的水平路径上构建了一个包含 74 名健康年轻成年人的数据库,这些成年人的年龄范围为 18 岁至 60 岁。我们使用一种称为改进的完全集合经验模态分解自适应噪声(improved CEEMDAN)的高效先进信号分解方法进行特征提取。分析表明,健康的健全个体的步态在一定程度上表现出自然的双足不对称性,这取决于活动类型和年龄,与个体的功能属性有关,而与病理性步态无关。转弯比的分析,即活动过渡能量变化和稳定性的度量,表明转弯比直线行走更不稳定,使其成为确定跌倒和其他健康问题的更可靠指标。提取的特征用于根据健康年轻人的步态模式分析两个不同的步行年龄组,将 18-45 岁的个体分为一组,46-60 岁的个体分为另一组。我们提出的简单、廉价的步行分析器系统可以作为临床医生的一种可移动筛查工具,用于在某些疾病早期识别高危人群。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验