Edefonti Valeria, Parmigiani Giovanni
.
Int J Biostat. 2017 Feb 16;13(1):/j/ijb.2017.13.issue-1/ijb-2015-0064/ijb-2015-0064.xml. doi: 10.1515/ijb-2015-0064.
We introduce combinatorial mixtures - a flexible class of models for inference on mixture distributions whose components have multidimensional parameters. The key idea is to allow each element of the component-specific parameter vectors to be shared by a subset of other components. This approach allows for mixtures that range from very flexible to very parsimonious and unifies inference on component-specific parameters with inference on the number of components. We develop Bayesian inference and computational approaches for this class of distributions, and illustrate them in an application. This work was originally motivated by the analysis of cancer subtypes: in terms of biological measures of interest, subtypes may be characterized by differences in location, scale, correlations or any of the combinations. We illustrate our approach using publicly available data on molecular subtypes of lung and prostate cancers.
我们引入组合混合模型——一类灵活的模型,用于对其成分具有多维参数的混合分布进行推断。关键思想是允许特定成分参数向量的每个元素由其他成分的一个子集共享。这种方法允许混合模型从非常灵活到非常简约,并将对特定成分参数的推断与对成分数量的推断统一起来。我们为这类分布开发了贝叶斯推断和计算方法,并在一个应用中进行了说明。这项工作最初是由癌症亚型分析推动的:就感兴趣的生物学指标而言,亚型可能以位置、尺度、相关性或任何组合的差异为特征。我们使用公开可用的肺癌和前列腺癌分子亚型数据来说明我们的方法。