Raman Sudhir, Deserno Lorenz, Schlagenhauf Florian, Stephan Klaas Enno
Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland.
Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany; Max Planck Fellow Group "Cognitive and Affective Control of Behavioral Adaptation", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
J Neurosci Methods. 2016 Aug 30;269:6-20. doi: 10.1016/j.jneumeth.2016.04.022. Epub 2016 Apr 30.
Generative models of neuroimaging data, such as dynamic causal models (DCMs), are commonly used for inferring effective connectivity from individual subject data. Recently introduced "generative embedding" approaches have used DCM-based connectivity parameters for supervised classification of individual patients or to find unknown subgroups in heterogeneous groups using unsupervised clustering methods.
We present a novel framework which combines DCMs with finite mixture models into a single hierarchical model. This approach unifies the inference of connectivity parameters in individual subjects with inference on population structure, i.e. the existence of subgroups defined by model parameters, and allows for empirical Bayesian estimates of a subject's connectivity based on subgroup-specific prior distributions. We introduce a Markov chain Monte Carlo sampling method for inversion of this hierarchical generative model.
This paper formally introduces the idea behind our novel concept and demonstrates the face validity of the model in application to both simulated data as well as an empirical fMRI dataset from healthy controls and patients with schizophrenia.
COMPARISON WITH EXISTING METHOD(S): The analysis of our empirical fMRI data demonstrates that our approach results in superior model evidence than the conventional non-hierarchical inversion of DCMs.
In this paper, we have presented a novel unified framework to jointly infer the effective connectivity parameters in DCMs for multiple subjects and, at the same time, discover connectivity-defined cluster structure of the whole population, using a mixture model approach.
神经影像数据的生成模型,如动态因果模型(DCM),通常用于从个体受试者数据中推断有效连接性。最近引入的“生成嵌入”方法已将基于DCM的连接性参数用于个体患者的监督分类,或使用无监督聚类方法在异质群体中寻找未知亚组。
我们提出了一个新颖的框架,将DCM与有限混合模型结合成一个单一的层次模型。这种方法将个体受试者连接性参数的推断与群体结构的推断统一起来,即由模型参数定义的亚组的存在,并允许基于亚组特定先验分布对受试者的连接性进行经验贝叶斯估计。我们引入了一种马尔可夫链蒙特卡罗采样方法来对这个层次生成模型进行反演。
本文正式介绍了我们新颖概念背后的思想,并证明了该模型在应用于模拟数据以及来自健康对照和精神分裂症患者的实证功能磁共振成像数据集时的表面效度。
我们对实证功能磁共振成像数据的分析表明,与传统的非层次DCM反演相比,我们的方法产生了更好的模型证据。
在本文中,我们提出了一个新颖的统一框架,使用混合模型方法联合推断多个受试者DCM中的有效连接性参数,同时发现整个人口的连接性定义的聚类结构。