Suppr超能文献

基于 N-NMR 的氨基酸代谢物 C-代谢通量分析方法。

N-NMR-Based Approach for Amino Acids-Based C-Metabolic Flux Analysis of Metabolism.

机构信息

LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France.

出版信息

Anal Chem. 2017 Feb 7;89(3):2101-2106. doi: 10.1021/acs.analchem.6b04767. Epub 2017 Jan 23.

Abstract

NMR analysis of the isotope incorporation in amino acids can be used to derive information about the topology and operation of cellular metabolism. Although traditionally performed by H and/or C NMR, we present here novel experiments that exploit the N nucleus to derive the same information with increased efficiency. Combined with a novel Hα-CO experiment, we increase the coverage of the isotopic space that can be probed by obtaining the complete distribution of isotopic species for the first two carbons of amino acids in cellular biomass hydrolysates. Our approach was evaluated using as reference material a biologically produced sample containing N-labeled metabolites with fully predictable C-labeling patterns. Results show excellent agreement between measured and expected isotopomer abundances for the different NMR experiments, with an accuracy and precision within 1%. We also demonstrate how these experiments can give detailed information about metabolic fluxes depending on the expression level of a critical enzyme. Hence, exploiting the N labeling of a cellular sample accelerates subsequent analysis of the hydrolyzed biomass and increases the coverage of isotopomers that can be quantified, making it a promising tool to increase the throughput and the resolution of C-fluxomics studies.

摘要

利用 NMR 分析氨基酸中的同位素掺入情况,可以获得有关细胞代谢的拓扑结构和运行情况的信息。尽管传统上是通过 H 和/或 C NMR 进行,但我们在此介绍了一些新的实验,这些实验利用 N 核来以更高的效率获得相同的信息。结合新的 Hα-CO 实验,我们增加了可探测的同位素质谱空间的覆盖范围,从而获得了细胞生物量水解物中氨基酸前两个碳原子的同位素物种的完整分布。我们使用一种含有具有完全可预测的 C 标记模式的 N 标记代谢产物的生物产生的样品作为参考材料来评估我们的方法。结果表明,不同 NMR 实验的测量和预期同位素质谱丰度之间具有极好的一致性,精度和精密度在 1%以内。我们还展示了如何根据关键酶的表达水平,这些实验可以提供有关代谢通量的详细信息。因此,利用细胞样品的 N 标记可以加速随后对水解生物质的分析,并增加可定量的同位素质谱丰度的覆盖范围,使其成为提高 C-通量组学研究的通量和分辨率的有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验