Suppr超能文献

在导数非线性薛定谔方程中稳定的宇称时间对称非线性模式和激发。

Stable parity-time-symmetric nonlinear modes and excitations in a derivative nonlinear Schrödinger equation.

机构信息

Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Phys Rev E. 2017 Jan;95(1-1):012205. doi: 10.1103/PhysRevE.95.012205. Epub 2017 Jan 13.

Abstract

The effect of derivative nonlinearity and parity-time-symmetric (PT-symmetric) potentials on the wave propagation dynamics is explored in the derivative nonlinear Schrödinger equation, where the physically interesting Scarf-II and harmonic-Hermite-Gaussian potentials are chosen. We study numerically the regions of unbroken and broken linear PT-symmetric phases and find some stable bright solitons of this model in a wide range of potential parameters even though the corresponding linear PT-symmetric phases are broken. The semielastic interactions between particular bright solitons and exotic incident waves are illustrated such that we find that particular nonlinear modes almost keep their shapes after interactions even if the exotic incident waves have evidently been changed. Moreover, we exert the adiabatic switching on PT-symmetric potential parameters such that a stable nonlinear mode with the unbroken linear PT-symmetric phase can be excited to another stable nonlinear mode belonging to the broken linear PT-symmetric phase.

摘要

在导数非线性薛定谔方程中,研究了导数非线性和奇偶时间对称(PT 对称)势对波传播动力学的影响,其中选择了物理上有趣的 Scarf-II 和调和厄米-高斯势。我们通过数值研究了未破坏和破坏线性 PT 对称相的区域,并在很宽的势参数范围内找到了该模型的一些稳定的明孤子,即使相应的线性 PT 对称相被破坏。特别说明了明孤子和奇异入射波之间的半弹性相互作用,结果发现即使奇异入射波明显改变,特定的非线性模式在相互作用后几乎保持其形状。此外,我们对 PT 对称势参数进行了绝热切换,使得具有未破坏线性 PT 对称相的稳定非线性模式可以被激发到属于破坏线性 PT 对称相的另一个稳定非线性模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验