Suppr超能文献

预测单质子正电荷胺的亲脂性。

Predicting the phospholipophilicity of monoprotic positively charged amines.

机构信息

Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands.

Safety and Environmental Assurance Centre, Unilever, Sharnbrook, Bedford, UK.

出版信息

Environ Sci Process Impacts. 2017 Mar 22;19(3):307-323. doi: 10.1039/c6em00615a.

Abstract

The sorption affinity of eighty-six charged amine structures to phospholipid monolayers (log K) was determined using immobilized artificial membrane high-performance liquid chromatography (IAM-HPLC). The amine compounds covered the most prevalent types of polar groups, widely ranged in structural complexity, and included forty-seven pharmaceuticals, as well as several narcotics and pesticides. Amine type specific corrective increments were used to align log K data with bilayer membrane sorption coefficients (K(IAM)). Using predicted sorption affinities of neutral amines, we evaluated the difference (scaling factor Δ) with the measured log K(IAM) for cationic amines. The Δ values were highly variable, ranging from -2.37 to +2.3 log units. For each amine type, polar amines showed lower Δ values than hydrocarbon based amines (CHN). COSMOmic software was used to directly calculate the partitioning coefficient of ionic structures into a phospholipid bilayer (K), including quaternary ammonium compounds. The resulting root mean square error (RMSE) between log K and log K(IAM) was 0.83 for all eighty-six polar amines, and 0.47 for sixty-eight CHN amines. The polar amines were then split into five groups depending on polarity and structural complexity, and corrective increments for each group were defined to improve COSMOmic predictions. Excluding only the group with sixteen complex amine structures (≥4 polar groups, M > 400, including several macrolide antibiotics), the resulting RMSE for corrected K values improved to 0.45 log units for the remaining set of 138 polar and CHN amines.

摘要

采用固定化人工膜高效液相色谱法(IAM-HPLC)测定了八十六种带电荷的胺结构对磷脂单层的吸附亲和力(log K)。胺类化合物涵盖了最常见的极性基团类型,结构复杂度广泛,包括四十七种药物,以及几种麻醉剂和杀虫剂。使用胺类型特异性校正增量来调整 log K 数据与双层膜吸附系数(K(IAM))。利用预测的中性胺的吸附亲和力,我们评估了阳离子胺的实测 log K(IAM)与预测值之间的差异(缩放因子Δ)。Δ 值变化很大,范围从-2.37 到+2.3 个对数单位。对于每种胺类型,极性胺的Δ 值都低于基于烃的胺(CHN)。使用 COSMOmic 软件直接计算离子结构在磷脂双层中的分配系数(K),包括季铵化合物。对于所有 86 种极性胺,log K 和 log K(IAM)之间的均方根误差(RMSE)为 0.83,对于 68 种 CHN 胺,RMSE 为 0.47。然后根据极性和结构复杂性将极性胺分为五组,并为每组定义校正增量以改进 COSMOmic 预测。排除仅具有十六种复杂胺结构(≥4 个极性基团,M > 400,包括几种大环内酯类抗生素)的组,对于其余 138 种极性和 CHN 胺,校正 K 值的 RMSE 提高到 0.45 个对数单位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验