Suppr超能文献

通过对中国仓鼠卵巢细胞转录组进行跨平台荟萃分析揭示基因与性状的关系。

Unveiling gene trait relationship by cross-platform meta-analysis on Chinese hamster ovary cell transcriptome.

作者信息

Zhao Liang, Fu Hsu-Yuan, Raju Ravali, Vishwanathan Nandita, Hu Wei-Shou

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota.

出版信息

Biotechnol Bioeng. 2017 Jul;114(7):1583-1592. doi: 10.1002/bit.26272. Epub 2017 Mar 9.

Abstract

In the past few years, transcriptome analysis has been increasingly employed to better understand the physiology of Chinese hamster ovary (CHO) cells at a global level. As more transcriptome data accumulated, meta-analysis on data sets collected from various sources can potentially provide better insights on common properties of those cells. Here, we performed meta-analysis on transcriptome data of different CHO cell lines obtained using NimbleGen or Affymetrix microarray platforms. Hierarchical clustering, non-negative matrix factorization (NMF) analysis, and principal component analysis (PCA) accordantly showed the samples were clustered into two groups: one consists of adherent cells in serum-containing medium, and the other suspension cells in serum-free medium. Genes that were differentially expressed between the two clusters were enriched in a few functional classes by Database for Annotation, Visualization, and Integrated Discovery (DAVID) of which many were common with the enriched gene sets identified by Gene Set Enrichment Analysis (GSEA), including extracellular matrix (ECM) receptor interaction, cell adhesion molecules (CAMs), and lipid related metabolism pathways. Despite the heterogeneous sources of the cell samples, the adherent and suspension growth characteristics and serum-supplementation appear to be a dominant feature in the transcriptome. The results demonstrated that meta-analysis of transcriptome could uncover features in combined data sets that individual data set might not reveal. As transcriptome data sets accumulate over time, meta-analysis will become even more revealing. Biotechnol. Bioeng. 2017;114: 1583-1592. © 2017 Wiley Periodicals, Inc.

摘要

在过去几年中,转录组分析越来越多地被用于从整体层面更好地理解中国仓鼠卵巢(CHO)细胞的生理学特性。随着更多转录组数据的积累,对从各种来源收集的数据集进行荟萃分析有可能为这些细胞的共同特性提供更好的见解。在此,我们对使用NimbleGen或Affymetrix微阵列平台获得的不同CHO细胞系的转录组数据进行了荟萃分析。层次聚类、非负矩阵分解(NMF)分析和主成分分析(PCA)一致显示样本被聚类为两组:一组由含血清培养基中的贴壁细胞组成,另一组由无血清培养基中的悬浮细胞组成。通过注释、可视化和综合发现数据库(DAVID)对两个聚类之间差异表达的基因进行功能分类富集,其中许多与基因集富集分析(GSEA)确定的富集基因集相同,包括细胞外基质(ECM)受体相互作用、细胞粘附分子(CAMs)和脂质相关代谢途径。尽管细胞样本来源不同,但贴壁和悬浮生长特性以及血清补充似乎是转录组中的一个主要特征。结果表明,转录组的荟萃分析可以揭示单个数据集可能未揭示的组合数据集中的特征。随着时间的推移转录组数据集不断积累,荟萃分析将变得更具揭示性。《生物技术与生物工程》2017年;114:1583 - 1592。©2017威利期刊公司

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验