Planes Isabelle, Girard Sylvain, Boukenter Aziz, Marin Emmanuel, Delepine-Lesoille Sylvie, Marcandella Claude, Ouerdane Youcef
Univ Lyon, Laboratoire Hubert Curien (LabHC), Université de Lyon, CNRS UMR 5516, F-42000 Saint-Etienne, France.
Agence Nationale Pour la gestion des Déchets Radioactifs (Andra), F-92298 Châtenay-Malabry, France.
Sensors (Basel). 2017 Feb 17;17(2):396. doi: 10.3390/s17020396.
We investigated the evolution of the performances of Pulse Pre Pump-Brillouin Time Domain Analysis (PPP-BOTDA) and Tunable Wavelength Coherent Optical Time Domain Reflectometry (TW-COTDR) fiber-based temperature and strain sensors when the sensing optical fiber is exposed to two γ-ray irradiation conditions: (i) at room temperature and a dose rate of 370 Gy(SiO2)/h up to a total ionizing dose (TID) of 56 kGy; (ii) at room temperature and a dose rate of 25 kGy(SiO2)/h up to a TID of 10 MGy. Two main different classes of single-mode optical fibers have been tested in situ, radiation-tolerant ones: fluorine-doped or nitrogen-doped core fibers, as well as Telecom-grade germanosilicate ones. Brillouin and Rayleigh Sensitivities of N-Doped fibers were not reported yet, and these characterizations pave the way for a novel and alternative sensing scheme. Moreover, in these harsh conditions, our results showed that the main parameter affecting the sensor sensitivity remains the Radiation Induced Attenuation (RIA) at its operation wavelength of 1550 nm. RIA limits the maximal sensing range but does not influence the measurement uncertainty. F-doped fiber is the most tolerant against RIA with induced losses below 8 dB/km after a 56 kGy accumulated dose whereas the excess losses of other fibers exceed 22 dB/km. Both Rayleigh and Brillouin signatures that are exploited by the PPP-BOTDA and the TW-COTDR remain unchanged (within our experimental uncertainties). The strain and temperature coefficients of the various fibers under test are not modified by radiations, at these dose/dose rate levels. Consequently, this enables the design of a robust strain and temperature sensing architecture for the monitoring of radioactive waste disposals.
我们研究了脉冲预泵浦 - 布里渊时域分析(PPP - BOTDA)和可调谐波长相干光时域反射仪(TW - COTDR)基于光纤的温度和应变传感器在传感光纤暴露于两种γ射线辐照条件下的性能演变:(i)在室温下,剂量率为370 Gy(SiO₂)/h,直至总电离剂量(TID)达到56 kGy;(ii)在室温下,剂量率为25 kGy(SiO₂)/h,直至TID达到10 MGy。原位测试了两类主要不同的单模光纤,即耐辐射光纤:氟掺杂或氮掺杂芯光纤,以及电信级锗酸盐光纤。尚未报道氮掺杂光纤的布里渊和瑞利灵敏度,这些特性为一种新颖的替代传感方案铺平了道路。此外,在这些恶劣条件下,我们的结果表明,影响传感器灵敏度的主要参数仍然是其1550 nm工作波长处的辐射诱导衰减(RIA)。RIA限制了最大传感范围,但不影响测量不确定度。F掺杂光纤对RIA的耐受性最强,在累积剂量达到56 kGy后,诱导损耗低于8 dB/km,而其他光纤的额外损耗超过22 dB/km。PPP - BOTDA和TW - COTDR利用的瑞利和布里渊信号在我们的实验不确定度范围内保持不变。在这些剂量/剂量率水平下,被测各种光纤的应变和温度系数不受辐射影响。因此,这使得能够设计一种用于监测放射性废物处置的强大应变和温度传感架构。