Suppr超能文献

肌腱附着点再生:Gli1+祖细胞的作用。

Enthesis regeneration: a role for Gli1+ progenitor cells.

作者信息

Schwartz Andrea G, Galatz Leesa M, Thomopoulos Stavros

机构信息

Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA.

Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai Hospital, Mount Sinai Health System, New York, NY 10029, USA.

出版信息

Development. 2017 Apr 1;144(7):1159-1164. doi: 10.1242/dev.139303. Epub 2017 Feb 20.

Abstract

The tendon enthesis originates from a specific pool of hedgehog-active Gli1+ progenitor cells that differentiate and produce mineralized fibrocartilage. The current study investigated the regenerative capacity of this cell population by comparing the responses of early postnatal and mature entheses to injury. Lineage tracing studies demonstrated that the original Gli1+ cell population had the capacity to heal immature entheses after injury, but this capacity was lost after the cells differentiated into mature fibrochondrocytes. To further examine the involvement of Gli1+ cells and hedgehog signaling in enthesis healing, Gli1 expression was examined via lineage tracing approaches and the effect of Smo deletion was examined in the injured entheses. Immature injured entheses retained high levels of Gli1 expression, a marker of hedgehog activation, consistent with non-injured controls. In contrast, injured mature entheses had few Gli1+ cells early in the healing process, with limited recovery of the cell population later in the healing process. These results suggest that the presence of activated hedgehog signaling in enthesis cells early in the healing process may enhance healing of enthesis injuries by mimicking developmental processes.

摘要

肌腱附着点起源于特定的刺猬信号通路激活的Gli1+祖细胞池,这些细胞分化并产生矿化纤维软骨。本研究通过比较出生后早期和成熟附着点对损伤的反应,研究了该细胞群体的再生能力。谱系追踪研究表明,原始的Gli1+细胞群体在损伤后有能力修复未成熟的附着点,但在细胞分化为成熟的纤维软骨细胞后,这种能力丧失。为了进一步研究Gli1+细胞和刺猬信号通路在附着点愈合中的作用,通过谱系追踪方法检测Gli1表达,并在损伤的附着点中检测Smo缺失的影响。未成熟的损伤附着点保留了高水平的Gli1表达,这是刺猬信号通路激活的标志物,与未受伤的对照一致。相比之下,受伤的成熟附着点在愈合过程早期Gli1+细胞很少,在愈合过程后期细胞群体的恢复有限。这些结果表明,在愈合过程早期附着点细胞中激活的刺猬信号通路的存在可能通过模拟发育过程来增强附着点损伤的愈合。

相似文献

1
Enthesis regeneration: a role for Gli1+ progenitor cells.
Development. 2017 Apr 1;144(7):1159-1164. doi: 10.1242/dev.139303. Epub 2017 Feb 20.
2
Development of migrating tendon-bone attachments involves replacement of progenitor populations.
Development. 2018 Dec 18;145(24):dev165381. doi: 10.1242/dev.165381.
3
Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis.
Dev Biol. 2015 Sep 1;405(1):96-107. doi: 10.1016/j.ydbio.2015.06.020. Epub 2015 Jun 30.
4
A mineralizing pool of Gli1-expressing progenitors builds the tendon enthesis and demonstrates therapeutic potential.
Cell Stem Cell. 2022 Dec 1;29(12):1669-1684.e6. doi: 10.1016/j.stem.2022.11.007.
5
A role for TGFβ signaling in Gli1+ tendon and enthesis cells.
FASEB J. 2024 Mar 31;38(6):e23568. doi: 10.1096/fj.202301452R.
6
Role of Scx+/Sox9+ cells as potential progenitor cells for postnatal supraspinatus enthesis formation and healing after injury in mice.
PLoS One. 2020 Dec 1;15(12):e0242286. doi: 10.1371/journal.pone.0242286. eCollection 2020.
8
Involvement of Indian hedgehog signaling in mesenchymal stem cell-augmented rotator cuff tendon repair in an athymic rat model.
J Shoulder Elbow Surg. 2017 Apr;26(4):580-588. doi: 10.1016/j.jse.2016.09.036. Epub 2016 Nov 22.

引用本文的文献

1
Immune response and cytokine pathways in psoriatic arthritis: A systematic review.
Arch Rheumatol. 2025 Mar 17;40(1):144-156. doi: 10.46497/ArchRheumatol.2025.10934. eCollection 2025 Mar.
2
Engineering a stem cell-embedded bilayer hydrogel with biomimetic collagen mineralization for tendon-bone interface healing.
Bioact Mater. 2025 Mar 10;49:207-217. doi: 10.1016/j.bioactmat.2025.03.001. eCollection 2025 Jul.
3
Stem and progenitor cells in the synovial joint as targets for regenerative therapy.
Nat Rev Rheumatol. 2025 Apr;21(4):211-220. doi: 10.1038/s41584-025-01222-z. Epub 2025 Mar 5.
4
Hedgehog signaling directs cell differentiation and plays a critical role in tendon enthesis healing.
NPJ Regen Med. 2025 Jan 20;10(1):3. doi: 10.1038/s41536-025-00392-4.
5
Development of a Mouse Model of Enthesis-Specific NF-κB Activation.
J Orthop Res. 2025 Apr;43(4):719-727. doi: 10.1002/jor.26035. Epub 2025 Jan 9.
6
Enthesitis on Chip - A Model for Studying Acute and Chronic Inflammation of the Enthesis and its Pharmacological Treatment.
Adv Healthc Mater. 2024 Dec;13(31):e2401815. doi: 10.1002/adhm.202401815. Epub 2024 Aug 27.
7
Sclerostin modulates mineralization degree and stiffness profile in the fibrocartilaginous enthesis for mechanical tissue integrity.
Front Cell Dev Biol. 2024 Jun 4;12:1360041. doi: 10.3389/fcell.2024.1360041. eCollection 2024.
8
A role for TGFβ signaling in Gli1+ tendon and enthesis cells.
FASEB J. 2024 Mar 31;38(6):e23568. doi: 10.1096/fj.202301452R.
9
Interfacial Tissue Regeneration with Bone.
Curr Osteoporos Rep. 2024 Apr;22(2):290-298. doi: 10.1007/s11914-024-00859-1. Epub 2024 Feb 15.
10
Biological approaches to the repair and regeneration of the rotator cuff tendon-bone enthesis: a literature review.
Biomater Transl. 2023 Jun 28;4(2):85-103. doi: 10.12336/biomatertransl.2023.02.004. eCollection 2023.

本文引用的文献

1
Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance.
Cancers (Basel). 2015 Nov 27;7(4):2330-51. doi: 10.3390/cancers7040894.
3
Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis.
Dev Biol. 2015 Sep 1;405(1):96-107. doi: 10.1016/j.ydbio.2015.06.020. Epub 2015 Jun 30.
5
Tendon regeneration and scar formation: The concept of scarless healing.
J Orthop Res. 2015 Jun;33(6):823-31. doi: 10.1002/jor.22853. Epub 2015 Apr 27.
6
Mechanisms of tendon injury and repair.
J Orthop Res. 2015 Jun;33(6):832-9. doi: 10.1002/jor.22806. Epub 2015 Mar 2.
8
Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy.
Semin Cell Dev Biol. 2014 Sep;33(100):93-104. doi: 10.1016/j.semcdb.2014.05.003. Epub 2014 May 19.
9
Notch signaling in skeletal stem cells.
Calcif Tissue Int. 2014 Jan;94(1):68-77. doi: 10.1007/s00223-013-9773-z. Epub 2013 Aug 22.
10
A role for hedgehog signaling in the differentiation of the insertion site of the patellar tendon in the mouse.
PLoS One. 2013 Jun 10;8(6):e65411. doi: 10.1371/journal.pone.0065411. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验