Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, P. R. China.
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China.
Nanoscale. 2017 Mar 2;9(9):3188-3195. doi: 10.1039/c6nr08962c.
The surface plasmon resonance (SPR) of metal nanoparticles exhibits quantum behaviors as the size decreases owing to the transitions of quantized conduction electrons, but most studies are limited to the monotonous SPR blue-shift caused by off-resonant transitions. Here, we demonstrate the nonmonotonous SPR red-shift caused by resonant electron transitions and photocatalytic activity enhanced by the quantum plasmon resonance of colloidal gold nanoparticles. A maximal SPR wavelength and the largest photocatalytic activity are observed in the quantum regime for the first time for the gold nanoparticles with a diameter of 3.6 nm. Theoretical analysis based on a quantum-corrected model reveals the evolution of SPR with quantized electron transitions and well explains the nonmonotonous size-dependencies of the SPR wavelength and absorption efficiency. These findings have profound implications for the understanding of the quantum nature of the SPR of metal nanoparticles and their applications in areas ranging from photophysics to photochemistry.
金属纳米粒子的表面等离子体共振(SPR)由于量子化传导电子的跃迁而表现出量子行为,随着尺寸的减小而蓝移,但大多数研究都局限于非共振跃迁引起的单调 SPR 蓝移。在这里,我们证明了由共振电子跃迁引起的非单调 SPR 红移以及胶体金纳米粒子的量子等离子体共振增强的光催化活性。首次在量子区域观察到直径为 3.6nm 的金纳米粒子的最大 SPR 波长和最大光催化活性。基于量子修正模型的理论分析揭示了 SPR 随量子电子跃迁的演化,并很好地解释了 SPR 波长和吸收效率的非单调尺寸依赖性。这些发现对理解金属纳米粒子 SPR 的量子性质及其在从光物理到光化学的各个领域的应用具有深远的意义。