Suppr超能文献

具有原子精度的量子尺寸金纳米团簇。

Quantum sized gold nanoclusters with atomic precision.

机构信息

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

出版信息

Acc Chem Res. 2012 Sep 18;45(9):1470-9. doi: 10.1021/ar200331z. Epub 2012 Jun 21.

Abstract

Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical properties of the nanocluster. Therefore, precise atomic control of nanoclusters is critically important: the nanometer precision typical of conventional nanoparticles is not sufficient. Atomically precise nanoclusters are represented by molecular formulas (e.g. Au(n)(SR)(m) for thiolate-protected ones, where n and m denote the respective number of gold atoms and ligands). Recently, major advances in the synthesis and structural characterization of molecular purity gold nanoclusters have made in-depth investigations of the size evolution of metal nanoclusters possible. Metal nanoclusters lie in the intermediate regime between localized atomic states and delocalized band structure in terms of electronic properties. We anticipate that future research on quantum-sized nanoclusters will stimulate broad scientific and technological interests in this special type of metal nanomaterial.

摘要

金纳米粒子通常具有金属核,其电子传导带由准连续的能级组成(即,间距 δ≪k(B)T,其中 k(B)T 是温度 T(通常为室温)下的热能,k(B)是玻尔兹曼常数)。传导带中的电子在金属核中漫游,光可以集体激发这些电子,从而产生等离子体响应。这种等离子体共振解释了 1857 年 Faraday 首次观察到的胶体金的美丽红宝石红色。另一方面,当金纳米粒子变得非常小(直径<2nm)时,传导带会发生显著的量子化。这些量子尺寸的纳米粒子构成了一类新型纳米材料,近年来受到了广泛关注。为了将量子尺寸的纳米粒子与传统的等离子体金纳米粒子区分开来,研究人员通常将超小纳米粒子称为纳米团簇。在本综述中,我们选择了几种典型尺寸的金纳米团簇,包括 Au(25)(SR)(18)、Au(38)(SR)(24)、Au(102)(SR)(44)和 Au(144)(SR)(60),以说明量子尺寸效应对金属纳米团簇赋予的新颖性质。在纳米团簇尺寸范围内,金纳米粒子的许多物理和化学性质从根本上发生了改变。金纳米团簇具有离散的电子能级,而不是等离子体纳米粒子中的连续能带。量子尺寸的纳米粒子在光学光谱中也显示出多个光吸收峰,而球形金纳米晶体的表面等离子体共振(SPR)峰为 520nm。尽管较大的纳米晶体显示出 fcc 结构,但纳米团簇通常具有非 fcc 原子堆积结构。纳米团簇还具有独特的荧光、手性和磁性性质。由于强量子限制效应,添加或去除一个金原子会显著改变纳米团簇的结构和电子及光学性质。因此,对纳米团簇进行精确的原子控制至关重要:传统纳米粒子的纳米级精度是不够的。原子精确的纳米团簇由分子公式表示(例如,对于硫醇保护的纳米团簇,Au(n)(SR)(m),其中 n 和 m 分别表示金原子和配体的数量)。最近,在合成和结构表征方面的重大进展使得对金属纳米团簇的尺寸演化进行深入研究成为可能。就电子性质而言,金属纳米团簇位于局域原子态和离域能带结构之间的中间区域。我们预计,对量子尺寸纳米团簇的未来研究将激发人们对这种特殊类型的金属纳米材料的广泛科学和技术兴趣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验