Department of Mechanical Engineering, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4006, United States.
Langmuir. 2017 Mar 14;33(10):2541-2550. doi: 10.1021/acs.langmuir.7b00163. Epub 2017 Mar 2.
Thermal management of high temperature systems through cooling droplets is limited by the existence of the Leidenfrost point (LFP), at which the formation of a continuous vapor film between a hot solid and a cooling droplet diminishes the heat transfer rate. This limit results in a bottleneck for the advancement of the wide spectrum of systems including high-temperature power generation, electronics/photonics, reactors, and spacecraft. Despite a long time effort on development of surfaces for suppression of this phenomenon, this limit has only shifted to higher temperatures, but still exists. Here, we report a new multiscale decoupled hierarchical structure that suppress the Leidenfrost state and provide efficient heat dissipation at high temperatures. The architecture of these structures is composed of a nanomembrane assembled on top of a deep micropillar structure. This architecture allows to independently tune the involved forces and to suppress LFP. Once a cooling droplet contacts these surfaces, by rerouting the path of vapor flow, the cooling droplet remains attached to the hot solid substrates even at high temperatures (up to 570 °C) for heat dissipation with no existence of Leidenfrost phenomenon. These new surfaces offer unprecedented heat dissipation capacity at high temperatures (2 orders of magnitude higher than the other state-of-the-art surfaces). We envision that these surfaces open a new avenue in thermal management of high-temperature systems through spray cooling.
通过冷却液滴对高温系统进行热管理受到莱顿弗罗斯特点(Leidenfrost point,LFP)的限制,在该点,热固体和冷却液滴之间形成的连续蒸汽膜会降低热传递速率。这一限制成为包括高温发电、电子/光子学、反应堆和航天器等广泛系统发展的瓶颈。尽管人们长期致力于开发抑制这种现象的表面,但这一限制仅将其转移到更高的温度,但仍然存在。在这里,我们报告了一种新的多尺度解耦分层结构,它可以抑制莱顿弗罗斯特状态并在高温下提供有效的散热。这些结构的架构由纳米膜组装在深微柱结构的顶部组成。这种架构允许独立地调整涉及的力并抑制莱顿弗罗斯特现象。一旦冷却液滴接触到这些表面,通过重新引导蒸汽流动的路径,冷却液滴在高温下(高达 570°C)仍保持附着在热固体基板上,而不会出现莱顿弗罗斯特现象,从而进行散热。这些新表面在高温下提供了前所未有的散热能力(比其他最先进的表面高 2 个数量级)。我们设想,这些表面为通过喷雾冷却对高温系统的热管理开辟了一条新途径。