Allgaier C, Hertting G, Huang H Y, Jackisch R
Pharmakologisches Institut der Universität, Freiburg i. Br., Federal Republic of Germany.
Br J Pharmacol. 1987 Sep;92(1):161-72. doi: 10.1111/j.1476-5381.1987.tb11308.x.
1 Effects of phorbol esters on the evoked noradrenaline release were studied in slices of the rabbit hippocampus, labelled with [3H]-noradrenaline, superfused continuously with a medium containing the reuptake inhibitor cocaine and stimulated electrically for 2 min (stimulation parameters: 2 ms, 24 mA, 5 V cm-1, 3 or 0.3 Hz). 2 The electrically-evoked overflow of [3H]-noradrenaline in the slices was increased in a concentration-dependent manner by the protein kinase C (PKC) activators 12-O-tetradecanoylphorbol 13-acetate (TPA) and 4 beta-phorbol 12,13-dibutyrate (4 beta-PDB). Phorbol esters, which do not activate PKC, 4-O-methyl-TPA and 4 alpha-PDB, showed no effect on neurotransmitter release. The effect of 4 beta-PDB was abolished in the presence of tetrodotoxin and in the absence of calcium. The PKC inhibitor polymyxin B inhibited the evoked noradrenaline release. 3 In the presence of 4 beta-PDB the inhibitory effects of the alpha 2-adrenoceptor agonist clonidine or the facilitatory effects of the alpha 2-adrenoceptor antagonist yohimbine seemed to be modified only by changes in the concentration of noradrenaline in the synaptic region. At a stimulation frequency of 3 Hz the inhibitory action of clonidine was reduced whereas the facilitatory effect of the yohimbine was even slightly enhanced by the phorbol ester. At 0.3 Hz and in the presence of 4 beta-PDB the effect of clonidine remained and that of yohimbine was strongly enhanced. 4 Pretreatment of the slices with islet-activating protein or N-ethylmaleimide significantly reduced the enhancement of noradrenaline release caused by 4 beta-PDB. It is possible that a regulatory N-protein is involved in steps following PKC activation. 5 These results suggest that PKC participates in the mechanism of action-potential-induced noradrenaline release from noradrenergic nerve terminals of the rabbit hippocampus and that effects on the autoinhibitory feedback system were not responsible for the 4 beta-PDB-induced increase of neurotransmitter release.