Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Japan Biological Informatics Consortium (JBiC), Aomi, Koto-ku, Tokyo 135-0064, Japan.
Nat Commun. 2017 Feb 22;8:14523. doi: 10.1038/ncomms14523.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.
异三聚体鸟苷酸结合蛋白(G 蛋白)作为信号通路中的分子开关,通过将细胞表面受体的激活与细胞内反应偶联。G 蛋白α亚基(Gα)中导致 GDP 解离加速的突变会导致下游效应蛋白的过度激活,从而导致癌变。然而,加速 GDP 解离的结构机制仍不清楚。在这里,我们使用磁场依赖的核磁共振弛豫分析来研究 GDP 结合 Gα在微秒时间尺度上的结构和动态特性。我们表明,Gα在一个与 GDP 紧密结合的基态构象和一个 GDP 亲和力降低的激发构象之间快速交换。致癌的 D150N 突变通过将平衡向激发构象移动来加速 GDP 解离。