Suppr超能文献

群体基因组学中的隐马尔可夫模型

Hidden Markov Models in Population Genomics.

作者信息

Dutheil Julien Y

机构信息

Department of Evolutionary Genetics, Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany.

出版信息

Methods Mol Biol. 2017;1552:149-164. doi: 10.1007/978-1-4939-6753-7_11.

Abstract

With the advent of sequencing techniques population genomics took a major shift. The structure of data sets has evolved from a sample of a few loci in the genome, sequenced in dozens of individuals, to collections of complete genomes, virtually comprising all available loci. Initially sequenced in a few individuals, such genomic data sets are now reaching and even exceeding the size of traditional data sets in the number of haplotypes sequenced. Because all loci in a genome are not independent, this evolution of data sets is mirrored by a methodological change. The evolutionary processes that generate the observed sequences are now modeled spatially along genomes whereas it was previously described temporally (either in a forward or backward manner). Although the spatial process of sequence evolution is complex, approximations to the model feature Markovian properties, permitting efficient inference. In this chapter, we introduce these recent developments that enable the modeling of the evolutionary history of a sample of several individual genomes. Such models assume the occurrence of meiotic recombination, and therefore, to date, they are dedicated to the analysis of eukaryotic species.

摘要

随着测序技术的出现,群体基因组学发生了重大转变。数据集的结构已从在数十个个体中测序的基因组中少数位点的样本,演变为几乎包含所有可用位点的完整基因组集合。这类基因组数据集最初是在少数个体中进行测序的,现在其测序单倍型的数量正在达到甚至超过传统数据集的规模。由于基因组中的所有位点并非相互独立,数据集的这种演变反映在方法学的变化上。现在,生成观测序列的进化过程是沿着基因组进行空间建模的,而此前是按时间(以向前或向后的方式)进行描述的。尽管序列进化的空间过程很复杂,但该模型的近似特征具有马尔可夫性质,从而能够进行高效推断。在本章中,我们介绍这些最新进展,它们能够对几个个体基因组样本的进化历史进行建模。此类模型假定发生减数分裂重组,因此,迄今为止,它们专门用于分析真核生物物种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验