Rasmussen Matthew D, Hubisz Melissa J, Gronau Ilan, Siepel Adam
Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America.
Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambs, United Kingdom.
PLoS Genet. 2014 May 15;10(5):e1004342. doi: 10.1371/journal.pgen.1004342. eCollection 2014.
The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the "ancestral recombination graph" (ARG), a complete record of coalescence and recombination events in the history of the sample. However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here, we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian genomes. The key idea of our approach is to sample an ARG of [Formula: see text] chromosomes conditional on an ARG of [Formula: see text] chromosomes, an operation we call "threading." Using techniques based on hidden Markov models, we can perform this threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the posterior distribution over ARGs and is effective in recovering various features of the ARG for dozens of sequences generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry associated with balancing selection and reductions in allele age in sites under directional selection. The patterns we observe near protein-coding genes are consistent with a primary influence from background selection rather than hitchhiking, although we cannot rule out a contribution from recurrent selective sweeps.
一组直系同源DNA序列的复杂关联结构由“祖先重组图”(ARG)唯一捕获,它完整记录了样本历史中的合并和重组事件。然而,现有的ARG推断方法计算量很大、高度近似或仅限于少量序列,因此,在应用群体基因组学中很少使用显式的ARG推断。在此,我们介绍一种新的ARG推断算法,其效率足以应用于数十个完整的哺乳动物基因组。我们方法的关键思想是在[公式:见原文]条染色体的ARG条件下对[公式:见原文]条染色体的ARG进行采样,我们将此操作称为“穿线”。使用基于隐马尔可夫模型的技术,我们可以精确执行此穿线操作,这取决于顺序马尔可夫合并的假设和时间离散化。一个扩展允许对子树而不是单个序列进行穿线。重复应用这些穿线操作会得到用于ARG的高效马尔可夫链蒙特卡罗采样器。我们已在名为ARGweaver的计算机程序中实现了这些方法。对模拟数据的实验表明,ARGweaver能迅速收敛到ARG上的后验分布,并且在恢复根据人类群体现实参数生成的数十个序列的ARG的各种特征方面很有效。在将ARGweaver应用于Complete Genomics公司的54个人类基因组序列时,我们发现了自然选择的明显特征,包括与平衡选择相关的异常古老祖先区域以及定向选择位点上等位基因年龄的降低。我们在蛋白质编码基因附近观察到的模式与背景选择而非搭便车的主要影响一致,尽管我们不能排除反复选择性清除的贡献。