Suppr超能文献

携带古老翻译蛋白的大肠杆菌的实验进化

Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein.

作者信息

Kacar Betül, Ge Xueliang, Sanyal Suparna, Gaucher Eric A

机构信息

NASA Astrobiology Institute, Mountain View, CA, 94035, USA.

Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.

出版信息

J Mol Evol. 2017 Mar;84(2-3):69-84. doi: 10.1007/s00239-017-9781-0. Epub 2017 Feb 23.

Abstract

The ability to design synthetic genes and engineer biological systems at the genome scale opens new means by which to characterize phenotypic states and the responses of biological systems to perturbations. One emerging method involves inserting artificial genes into bacterial genomes and examining how the genome and its new genes adapt to each other. Here we report the development and implementation of a modified approach to this method, in which phylogenetically inferred genes are inserted into a microbial genome, and laboratory evolution is then used to examine the adaptive potential of the resulting hybrid genome. Specifically, we engineered an approximately 700-million-year-old inferred ancestral variant of tufB, an essential gene encoding elongation factor Tu, and inserted it in a modern Escherichia coli genome in place of the native tufB gene. While the ancient homolog was not lethal to the cell, it did cause a twofold decrease in organismal fitness, mainly due to reduced protein dosage. We subsequently evolved replicate hybrid bacterial populations for 2000 generations in the laboratory and examined the adaptive response via fitness assays, whole genome sequencing, proteomics, and biochemical assays. Hybrid lineages exhibit a general adaptive strategy in which the fitness cost of the ancient gene was ameliorated in part by upregulation of protein production. Our results suggest that an ancient-modern recombinant method may pave the way for the synthesis of organisms that exhibit ancient phenotypes, and that laboratory evolution of these organisms may prove useful in elucidating insights into historical adaptive processes.

摘要

在基因组规模上设计合成基因和构建生物系统的能力,为表征表型状态以及生物系统对扰动的反应开辟了新途径。一种新兴方法是将人工基因插入细菌基因组,并研究基因组及其新基因如何相互适应。在此,我们报告了对该方法的一种改进方法的开发与实施,即将系统发育推断的基因插入微生物基因组,然后利用实验室进化来研究所得杂交基因组的适应潜力。具体而言,我们构建了一个约7亿年前推断的tufB祖先变体,tufB是编码延伸因子Tu的必需基因,并将其插入现代大肠杆菌基因组中,取代天然的tufB基因。虽然古老的同源基因对细胞并非致命,但它确实导致生物体适应性下降了两倍,主要原因是蛋白质剂量减少。随后,我们在实验室中使杂交细菌群体复制品进化2000代,并通过适应性测定、全基因组测序、蛋白质组学和生化测定来研究适应性反应。杂交谱系展现出一种普遍的适应策略,即古老基因的适应性代价部分通过蛋白质产量的上调得到改善。我们的结果表明,一种古老 - 现代重组方法可能为合成表现出古老表型的生物体铺平道路,并且这些生物体的实验室进化可能有助于阐明对历史适应性过程的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49df/5371648/5fd3e2090bef/239_2017_9781_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验