Suppr超能文献

MotB的祖先序列重建具有质子动力性,且运动需要MotA。

Ancestral Sequence Reconstructions of MotB Are Proton-Motile and Require MotA for Motility.

作者信息

Islam Md Imtiazul, Lin Angela, Lai Yu-Wen, Matzke Nicholas J, Baker Matthew A B

机构信息

School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia.

School of Biological Sciences, University of Auckland, Auckland, New Zealand.

出版信息

Front Microbiol. 2020 Dec 23;11:625837. doi: 10.3389/fmicb.2020.625837. eCollection 2020.

Abstract

The bacterial flagellar motor (BFM) is a nanomachine that rotates the flagellum to propel many known bacteria. The BFM is powered by ion transit across the cell membrane through the stator complex, a membrane protein. Different bacteria use various ions to run their BFM, but the majority of BFMs are powered by either proton (H) or sodium (Na) ions. The transmembrane (TM) domain of the B-subunit of the stator complex is crucial for ion selectivity, as it forms the ion channel in complex with TM3 and TM4 of the A-subunit. In this study, we reconstructed and engineered thirteen ancestral sequences of the stator B-subunit to evaluate the functional properties and ionic power source of the stator proteins at reconstruction nodes to evaluate the potential of ancestral sequence reconstruction (ASR) methods for stator engineering and to test specific motifs previously hypothesized to be involved in ion-selectivity. We found that all thirteen of our reconstructed ancient B-subunit proteins could assemble into functional stator complexes in combination with the contemporary MotA-subunit to restore motility in stator deleted strains. The flagellar rotation of the thirteen ancestral MotBs was found to be Na independent which suggested that the F30/Y30 residue was not significantly correlated with sodium/proton phenotype, in contrast to what we had reported previously. Additionally, four among the thirteen reconstructed B-subunits were compatible with the A-subunit of and able to function in a sodium-independent manner. Overall, this work demonstrates the use of ancestral reconstruction to generate novel stators and quantify which residues are correlated with which ionic power source.

摘要

细菌鞭毛马达(BFM)是一种纳米机器,它通过旋转鞭毛来推动许多已知细菌运动。BFM由离子通过作为膜蛋白的定子复合体跨细胞膜转运提供动力。不同的细菌利用各种离子来驱动其BFM,但大多数BFM由质子(H⁺)或钠离子(Na⁺)提供动力。定子复合体B亚基的跨膜(TM)结构域对于离子选择性至关重要,因为它与A亚基的TM3和TM4形成离子通道。在本研究中,我们重建并设计了定子B亚基的13个祖先序列,以评估重建节点处定子蛋白的功能特性和离子动力源,评估祖先序列重建(ASR)方法用于定子工程的潜力,并测试先前假设参与离子选择性的特定基序。我们发现,我们重建的所有13种古代B亚基蛋白都可以与当代MotA亚基组装成功能性定子复合体,以恢复定子缺失菌株的运动性。我们发现13种祖先MotB的鞭毛旋转不依赖于钠离子,这表明F30/Y30残基与钠/质子表型没有显著相关性,这与我们之前的报道相反。此外,13个重建的B亚基中有4个与A亚基兼容,并且能够以不依赖钠离子的方式发挥作用。总的来说,这项工作展示了利用祖先重建来生成新型定子,并量化哪些残基与哪种离子动力源相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85d1/7787011/3c783576b6d5/fmicb-11-625837-g001.jpg

相似文献

7
Structure of MotA, a flagellar stator protein, from hyperthermophile.嗜热菌鞭毛定子蛋白 MotA 的结构
Biochem Biophys Res Commun. 2022 Nov 26;631:78-85. doi: 10.1016/j.bbrc.2022.09.072. Epub 2022 Sep 21.

引用本文的文献

本文引用的文献

1
Structure and Function of Stator Units of the Bacterial Flagellar Motor.细菌鞭毛马达定子单元的结构与功能。
Cell. 2020 Oct 1;183(1):244-257.e16. doi: 10.1016/j.cell.2020.08.016. Epub 2020 Sep 14.
2
Structures of the stator complex that drives rotation of the bacterial flagellum.驱动细菌鞭毛旋转的定子复合物的结构。
Nat Microbiol. 2020 Dec;5(12):1553-1564. doi: 10.1038/s41564-020-0788-8. Epub 2020 Sep 14.
9
The enigmatic archaeal virosphere.神秘的古菌病毒圈。
Nat Rev Microbiol. 2017 Nov 10;15(12):724-739. doi: 10.1038/nrmicro.2017.125.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验