Suppr超能文献

针对表型耐受的结核分枝杆菌。

Targeting Phenotypically Tolerant Mycobacterium tuberculosis.

机构信息

Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065.

出版信息

Microbiol Spectr. 2017 Jan;5(1). doi: 10.1128/microbiolspec.TBTB2-0031-2016.

Abstract

While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.

摘要

尽管免疫系统在数十亿接触结核分枝杆菌的个体中避免了结核病,但免疫系统也导致了抗生素迅速和持久治愈疾病的能力受到限制。在患有结核病的个体中,宿主免疫会产生多种微环境小生境,这些小生境支持结核分枝杆菌的生长不佳或完全生长停滞。细菌非复制的生理状态与表型药物耐受性有关。许多这些宿主微环境,当通过碳饥饿、完全营养饥饿、静止期、酸性 pH 值、活性氮中间体、缺氧、生物膜和从依赖链霉素的 SS18b 菌株中 withholding 链霉素来在体外建模时,使结核分枝杆菌对许多在临床环境中给予结核病患者的抗生素产生了极高的耐受性。针对非复制的持久菌预计将减少抗生素治疗的持续时间和治疗后复发的比率。一些有前途的治疗结核病的药物,如利福平 (rifampin) 和贝达喹啉 (bedaquiline),仅在远远高于其对复制杆菌的最小抑菌浓度的浓度下在体外杀死非复制的结核分枝杆菌。迫切需要确定目前使用的抗生素中有哪些,以及学术和企业筛选收藏中的分子中有哪些,对非复制的结核分枝杆菌具有强大的杀菌作用。为此,我们回顾了针对非复制结核分枝杆菌的高通量筛选方法和推进候选分子的方法。基于已报道能杀死非复制结核分枝杆菌的分子的结构和假定靶标进行分类,揭示了药效团的丰富多样性。

相似文献

1
Targeting Phenotypically Tolerant Mycobacterium tuberculosis.
Microbiol Spectr. 2017 Jan;5(1). doi: 10.1128/microbiolspec.TBTB2-0031-2016.
2
A Multistress Model for High Throughput Screening Against Nonreplicating Mycobacterium tuberculosis.
Methods Mol Biol. 2021;2314:611-635. doi: 10.1007/978-1-0716-1460-0_27.
4
Detection of inhibitors of phenotypically drug-tolerant Mycobacterium tuberculosis using an in vitro bactericidal screen.
J Microbiol. 2013 Oct;51(5):651-8. doi: 10.1007/s12275-013-3099-4. Epub 2013 Jun 25.
5
Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model.
ACS Chem Biol. 2013 Oct 18;8(10):2224-34. doi: 10.1021/cb4004817. Epub 2013 Aug 13.
8
A class of hydrazones are active against non-replicating Mycobacterium tuberculosis.
PLoS One. 2018 Oct 17;13(10):e0198059. doi: 10.1371/journal.pone.0198059. eCollection 2018.
9
Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2015 Oct;59(10):6521-38. doi: 10.1128/AAC.00803-15. Epub 2015 Aug 3.
10
Extreme Drug Tolerance of Mycobacterium tuberculosis in Caseum.
Antimicrob Agents Chemother. 2018 Jan 25;62(2). doi: 10.1128/AAC.02266-17. Print 2018 Feb.

引用本文的文献

1
Incorporation of macrophage immune stresses into an assay for drug tolerance in intracellular .
bioRxiv. 2025 May 9:2025.05.09.653069. doi: 10.1101/2025.05.09.653069.
3
Strategies for shortening tuberculosis therapy.
Nat Med. 2025 Jun;31(6):1765-1775. doi: 10.1038/s41591-025-03742-3. Epub 2025 Jun 13.
4
Fate of cultured populations when exposed to moxifloxacin.
Front Microbiol. 2024 Nov 28;15:1494147. doi: 10.3389/fmicb.2024.1494147. eCollection 2024.
5
Reactive Oxygen Detoxification Contributes to Antibiotic Survival.
bioRxiv. 2024 Oct 29:2024.10.13.618103. doi: 10.1101/2024.10.13.618103.
6
Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis.
PLoS Pathog. 2024 Oct 9;20(10):e1012595. doi: 10.1371/journal.ppat.1012595. eCollection 2024 Oct.
9
Targeting pH-driven adaptation.
Microbiology (Reading). 2024 May;170(5). doi: 10.1099/mic.0.001458.

本文引用的文献

1
Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies.
Curr Top Microbiol Immunol. 2016;398:339-363. doi: 10.1007/82_2016_498.
4
The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity.
Nat Microbiol. 2016 Aug 26;1(11):16147. doi: 10.1038/nmicrobiol.2016.147.
5
β-Lactams against Tuberculosis--New Trick for an Old Dog?
N Engl J Med. 2016 Jul 28;375(4):393-4. doi: 10.1056/NEJMc1513236. Epub 2016 Jul 13.
6
8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5765-76. doi: 10.1128/AAC.00325-16. Print 2016 Oct.
7
Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor.
EBioMedicine. 2016 Jun;8:291-301. doi: 10.1016/j.ebiom.2016.05.006. Epub 2016 May 8.
8
Persister formation in is associated with ATP depletion.
Nat Microbiol. 2016;1. doi: 10.1038/nmicrobiol.2016.51. Epub 2016 Apr 18.
9
Detection and Quantification of Differentially Culturable Tubercle Bacteria in Sputum from Patients with Tuberculosis.
Am J Respir Crit Care Med. 2016 Dec 15;194(12):1532-1540. doi: 10.1164/rccm.201604-0769OC.
10
Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant Mycobacterium tuberculosis.
J Med Chem. 2016 Jul 28;59(14):6848-59. doi: 10.1021/acs.jmedchem.6b00674. Epub 2016 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验