Lee Jae Jin, Swanson Daniel H, Lee Sun-Kyung, Dihardjo Stephanie, Lee Gi Yong, Gelle Sree, Seong Hoon Je, Bravo Emily R M, Taylor Zachary E, Van Nieuwenhze Michael S, Singh Abhyudai, Lee Jong-Seok, Eum Seokyong, Cho SangNae, Swarts Benjamin M, Eoh Hyungjin
Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
Nat Commun. 2025 Jul 11;16(1):6442. doi: 10.1038/s41467-025-61703-3.
Drug-resistance (DR) in bacteria often develops through the repetitive formation of drug-tolerant persisters, which survive antibiotics without genetic changes. It is unclear whether Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), undergoes a similar transitioning process. Recent studies highlight changes in trehalose metabolism as crucial for persister formation and drug resistance. Here, we observe that mutants lacking trehalose catalytic shift activity exhibited fewer DR mutants due to decreased persisters. This shift enhances Mtb survival during antibiotic treatment by increasing metabolic heterogeneity and drug tolerance, facilitating drug resistance. Rifampicin (RIF)-resistant bacilli display cross-resistance to other antibiotics linked to higher trehalose catalytic shift, explaining how multidrug resistance (MDR) can follow RIF-resistance. In particular, the HN878 W-Beijing strain exhibits higher trehalose catalytic shift, increasing MDR risk. Both genetic and pharmacological inactivation of this shift reduces persister formation and MDR development, suggesting trehalose catalytic shift as a potential therapeutic target to combat TB resistance.
细菌中的耐药性(DR)通常通过耐药物的持留菌的反复形成而产生,这些持留菌在不发生基因变化的情况下能在抗生素环境中存活。目前尚不清楚导致结核病(TB)的结核分枝杆菌(Mtb)是否经历类似的转变过程。最近的研究强调海藻糖代谢的变化对持留菌形成和耐药性至关重要。在此,我们观察到缺乏海藻糖催化转变活性的突变体由于持留菌减少而表现出较少的耐药突变体。这种转变通过增加代谢异质性和药物耐受性来提高Mtb在抗生素治疗期间的存活率,从而促进耐药性。耐利福平(RIF)的杆菌对与较高海藻糖催化转变相关的其他抗生素表现出交叉耐药性,这解释了多重耐药(MDR)如何继RIF耐药之后出现。特别是,HN878 W-北京菌株表现出较高的海藻糖催化转变,增加了MDR风险。这种转变的基因和药理学失活均减少了持留菌的形成和MDR的发展,表明海藻糖催化转变是对抗结核病耐药性的潜在治疗靶点。