Perović Marija, Obradović Vesna, Kovačević Srđan, Mitrinović David, Živančev Nevena, Nenin Tanja
Water Environ Res. 2017 Jan 1;89(1):4-16. doi: 10.2175/106143016X14733681696121.
Increasing nitrate concentration in many shallow aquifers has become a global environmental problem. In order to determine anoxic aquifer sensitivity to nitrate pollution and potential for nitrogen conservation, we have qualified potential nitrate transformation pathways, by conducting field tests, tracer study, physicochemical and microbiological analysis of the groundwater. Combination of in situ measuring and laboratory analysis of physicochemical properties and selected biological activity reactivity tests (BARTTM), has enabled estimation of different pathways of NO3- reduction. During five days of nitrate enrichment experiment there was no observed increase in NO3- concentration, nor any observed decrease of TN (total nitrogen) in the groundwater, while NH4+ production rates increased (with the peak concentrations of 4.97 mg N/L) on the first day of the experiment. We assume that inhibited respiratory denitrification and enhanced DNRA (dissimilatory reduction of nitrate to ammonium) may preserve available nitrogen in a bioavailable form of ammonium.
许多浅层含水层中硝酸盐浓度不断增加已成为一个全球性环境问题。为了确定缺氧含水层对硝酸盐污染的敏感性以及氮素守恒潜力,我们通过开展现场试验、示踪研究以及对地下水进行物理化学和微生物分析,明确了潜在的硝酸盐转化途径。结合现场测量以及对物理化学性质的实验室分析和选定的生物活性反应性测试(BARTTM),得以估算出NO3-还原的不同途径。在为期五天的硝酸盐富集实验中,未观察到地下水中NO3-浓度增加,也未观察到总氮(TN)减少,而在实验第一天NH4+生成速率有所增加(峰值浓度为4.97 mg N/L)。我们认为,受抑制的呼吸性反硝化作用和增强的异化硝酸盐还原为铵作用(DNRA)可能会以生物可利用的铵形式保存有效氮。